
1

University of Portsmouth
School of Creative Technologies

Final Year Project undertaken in partial fulfilment of the requirements for the BSc (Honours)

in Computer Games Technology.

How can the high performance visualization tool Splotch be adapted to produce

cosmological images in two distinct computing environments?

By

Elliott George Ayling

614173

Supervisor: Mel Krokos

Project Unit: CT6CTPRO

March 2016

Project Type: Artefact

Abstract

Two client based projects are presented in this report. Both use the ray-tracer software tool

Splotch, which supports effective visualization of cosmological simulation data. The aim was

to create applications which focus on providing optimised and accessible functions for use in

cosmological and astronomical visualization. The first is an application made with the

artistically focused C++ library Cinder, and is designed to offer an easy to use tool to interact

with 3D visualizations of cosmological datasets on an accessible platform, and is the first of

its type within Cinder. The second shows the adaptation and implementation of the Splotch

software on the gSTAR supercomputer for the purposes of the Theoretical Astronomical

Observatory. The result of which has a focus on optimisation whilst also adding functionality

to automate parts of the Splotch software, with the aim of lowering the level of accessibility

to produce the visualization images. The culmination is a report which can act as a guide for

any projects which aim to pursue similar goals.

2

1 CONTENTS

2 Introduction .. 5

2.1 Project Overview ... 5

3 Literature Review .. 6

3.1 Introduction .. 6

3.2 Simulations .. 6

3.3 Visualization Tools .. 7

3.4 Splotch .. 7

3.4.1 Splotch Previewer ... 9

3.5 Cinder .. 9

4 Methodology ... 11

4.1 Methodological Models .. 11

4.1.1 Waterfall Model .. 11

4.1.2 Prototype Model ... 11

4.1.3 Incremental Build Model .. 12

4.2 Justification of Chosen Model ... 12

5 Using Splotch within a Cinder application .. 13

5.1 Entropy .. 13

5.2 Requirements .. 13

5.2.1 Gathering of Requirements... 13

5.2.2 Functional Requirements .. 13

5.2.3 Non-functional Requirements .. 14

5.3 Initial Research .. 14

5.4 Design .. 14

5.4.1 Proposed Solutions ... 14

5.4.2 Decided Solution ... 16

5.5 Timeline ... 17

5.6 Implementation .. 17

5.6.1 Development Tools ... 17

5.6.2 Integration with Splotch ... 18

5.6.3 Cinder Interface .. 19

5.6.4 Cinder Renderer .. 20

5.6.5 Shader assets .. 21

5.7 Prototypes ... 24

5.7.1 First Prototype .. 24

3

5.7.2 Second Prototype .. 24

5.7.3 Third Prototype ... 24

5.7.4 Fourth Prototype ... 25

5.7.5 Fifth Prototype .. 26

5.7.6 Sixth Prototype.. 27

5.7.7 Eight Prototype ... 28

5.7.8 Ninth Prototype .. 29

5.8 Testing ... 30

5.8.1 White and Black-Box Testing .. 30

5.8.2 Module (Unit) Testing ... 31

5.8.3 Testing Implementation .. 31

5.9 Evaluation and Future Work ... 32

5.9.1 Summery ... 32

5.9.2 Performance and Optimisation ... 32

5.9.3 Methodology ... 33

5.9.4 Further Features ... 33

5.9.5 Recommendations .. 34

6 Integrating Splotch for use on the Swinburne gSTAR Supercomputer ... 35

6.1 Introduction .. 35

6.2 Initial Planning... 36

6.3 Adaptation of the HDF5 Reader .. 37

6.4 Further Work ... 38

6.5 Optimisation and Testing .. 40

6.5.1 Benchmarks ... 40

6.5.2 Further Optimisation... 42

6.6 Evaluation and Future Work ... 43

6.6.1 Summery ... 43

6.6.2 Performance.. 43

6.6.3 Workflow ... 43

6.6.4 Future Work .. 43

7 Conclusions and Evaluation .. 44

7.1 Summery ... 44

8 Table of Figures ... 45

9 Bibliography .. 46

10 Appendix 1 - Client proposal document ... 52

11 Appendix 2- Splotch Manual First Draft .. 53

4

12 Appendix 3- Test Cases ... 57

12.1 First Prototype .. 57

12.2 Second Prototype .. 58

12.3 Third Prototype ... 59

12.4 Fourth Prototype... 60

12.5 Fifth Prototype .. 61

12.6 Sixth Prototype ... 62

12.7 Seventh Prototype .. 63

12.8 Eight Prototype ... 64

12.9 Ninth Prototype .. 66

12.10 Not Tested ... 68

5

2 INTRODUCTION

46 years ago, on July 21 1969, the world watched as Neil Armstrong descended from the Apollo

spacecraft and became the first human to step foot on a world that was not our own. The image of

Neil Armstrong walking the lunar surface, and the words he spoke when he did have become

immortalised in time, and have served to inspire countless generations of children, including a future

commander of the International Space Station (Wall, 2012). The achievement of the first lunar walk

was a huge accomplishment at the time, but has served to accomplish even more through the

actions of those it inspired. But, with the final Apollo mission having concluded 44 years ago, the

majority of the exciting scientific discoveries and accomplishments since have been performed with

pen and paper, and more recently, computers. So how can science, and the people behind it,

attempt to emulate the excitement and fever 46 years ago of seeing a man, and his spectacular

small step.

Science outreach programs aim ǘƻ άǎƛƳǳƭŀǘŜ ƛƴǘŜǊŜǎǘ ŀƴŘ ǘƻ ŜƴŎƻǳǊŀƎŜ ōŜǘǘŜǊ ǳƴŘŜǊǎǘŀƴŘƛƴƎ ƻŦ ǘƘŜ

ŀǇǇƭƛŎŀǘƛƻƴ ƻŦ ǎŎƛŜƴŎŜΧέ (Edwards, 2016). They have a long history, a famous example of which is

aƛŎƘŀŜƭ CŀǊŀŘŀȅΩǎ /ƘǊƛǎǘƳŀǎ [ŜŎǘǳǊŜ ǎŜǊƛŜǎ ǎǘŀǊǘŜŘ ƛƴ мунр (Sample, 2015), which had the aim of

ƛƴǘǊƻŘǳŎƛƴƎ άŀ ȅƻǳƴƎ ŀǳŘƛŜƴŎŜ ǘƻ ŀ ǎǳōƧŜŎǘ ǘƘǊƻǳƎƘ ǎǇŜŎǘŀŎǳƭŀǊ ŘŜƳƻƴǎǘǊŀǘƛƻƴǎΧέ (Royal Institution,

n.d). In a time where technology plays such a key role in both personal, and scientific areas, science

outreach programs must, too, evolve and adapt to the ever changing landscape.

2.1 PROJECT OVERVIEW
This report will speak about two separate client based projects. The first is a project for The

¦ƴƛǾŜǊǎƛǘȅ ƻŦ tƻǊǘǎƳƻǳǘƘΩǎ LƴǎǘƛǘǳǘŜ ƻŦ /ƻǎƳƻƭƻƎȅ ŀƴŘ DǊŀǾƛǘŀǘƛƻƴΩǎ YŀǘŀǊƛƴŀ aŀǊƪƻǾƛő. This project

is for the purposes of the art-science collaboration performance, Entropy. Entropy is a public talk

about the history of the universe, accompanied by a live audio-visual performance. The primary

objective of the project is to create an application which can support cosmological visualizations in a

format that is easy and accessible for the public, in the same vein as the goals of Entropy. This takes

ǘƘŜ ŦƻǊƳ ƻŦ ŀƴ ŀǇǇƭƛŎŀǘƛƻƴ ǳǎƛƴƎ ǘƘŜ /ҌҌ ƭƛōǊŀǊȅ /ƛƴŘŜǊΣ ǿƘƛŎƘ ƛǎ άŦƻǊ ǇǊƻƎǊŀƳƳƛƴƎ ǿƛǘƘ ŀŜǎǘƘŜǘƛŎ

ƛƴǘŜƴǘέ (Cinder, 2015a). The application created for this artistic environment will be described in

detail in section 5.

The second project is also a client based project, but for Claudio Gheller, the Scientific Community

Engagement Group Lead at the Swiss National Supercomputing Centre, and is one of the developers

for the focused software in this report, Splotch. Through Claudio the project will involve adapting

Splotch for the purposes of the Theoretical Astrophysical Observatory(TAO) on the gSTAR

supercomputing system operated by the Centre for Astrophysics and Supercomputing, based out of

the Swinburne University of Technology in Melbourne, Australia. The work performed for this

project will be discussed in section 6.

Both projects present a unique opportunity to develop applications that focus on easily visualizing

cosmological datasets but in two very different environments. The first is for the artistic and

atheistically focused Cinder community- who are not necessarily knowledgeable of the technical

skills needed to work within a high performance computing environment, and the second is for the

astronomical scientific community which TAO serves through a focus on optimised and effective

supercomputing systems.

6

3 LITERATURE REVIEW

3.1 INTRODUCTION
One of the more prevalent questions that modern science aims to understand is how the formation

of structures within the universe were created some 13.82 billion years ago following the Big Bang

(Europeon Space Agency, 2013) in order to gain an understanding of the universe as whole. A huge

variety of factors came into play at the creation of the universe which led to the increasingly

complex structures that we have today. The results of this has led to adoption of techniques and

tools which are designed in a way that attempts to fully describe and explain such a fundamentally

complicated system of stars, gases, and galaxies. The data which these techniques produce can

range from megabytes in size (Goldbaum, 2011), to petabytes and more (Lerner, 2015), and so a

need is created in order to explore this data in a visual and intuitive way.

Visualization is a way to look at these huge data sets in a way that allows us to understand the data

in a communicative way. Kosara (2007) defines data visualization as being:

1. Based on (non-visual) data- the data must come from outside the program and the program

must be able to work on different datasets.

2. Able to produce an image- The goal of the visualization must be producing one or more

images as its means of primary communication of the data. The visualization must be able to

stand on its own.

3. Able to produce a readable and recognisable result- The result must be understood by the

viewer, even if this requires training or practice. The use of additional elements is possible,

but must not take precedence over communication goals of the visualization.

Therefore, a visualization should create images that are both intriguing and informative whilst also

serving the scientific purpose of allowing us to represent numerical values in a meaningful system.

3.2 SIMULATIONS
In order to visualize this data, they must first be produced, and in order to realistically do so, there

exists a number of methods which produce numerical simulations used to simulate these various

structures of the universe (Dolag, Borgani, Schindler, Diaferio, & Bykov, 2008).

One such example of these simulations is the Millennium Simulation (Springel, et al., 2005), which

uses a modified version of the GADGET2 code (Springel, Yoshida, & White, 2001) to simulate 2,1603

particles. The Millennium Simulation used 512 processes of a parallel computer at the Computing

Centre of the Max-Planch Society, almost 1TB of memory, and required around 350,000 core hours,

or 28 days of walltime (Springel, et al., 2005). This was considered the best large cosmological

simulation for a number of years, along with the Millennium-II simulation (Boylan-Kolchin, Springel,

White, Jenkins, & Lemson, 2009) but has now been to shown to have used obsolete parameters

which are considered to be inaccurate (Stephens, 2011). The higher resolution and more accurate

Bolshoi Simulation was introduced in 2011 (Klypin, Trujillo-Gomez, & Primack), which boasted

άƴŜŀǊƭȅ ŀƴ ƻǊŘŜǊ ƻŦ ƳŀƎƴƛǘǳŘŜ ōŜǘǘŜǊ Ƴŀǎǎ ŀƴŘ ŦƻǊŎŜ ǊŜǎƻƭǳǘƛƻƴ ǘƘŀƴ ǘƘŜ Millennium wǳƴέΦ

Further simulations include those introduced by the Illustric Project (Vogelsberger, et al., 2014)

which produced 230TB of cumulative data volumes. The largest of these simulations took 19 million

core hours to produce (The Illustris Collaboration, 2015).

7

More recent visualizations include one of the largest named the Q Continuum simulation (Heitmann,

et al., 2015), which is a simulation carried out on a GPU-accelerated supercomputer, and involves

more than half a trillion particles. The raw output of the Q Continuum simulation is approximately

2PB (petabytes), a factor of 100 increase compared to the Millennium simulation (Heitmann, et al.,

2015, p. 5) and it used almost 90% of the 18,688 computer nodes of the Titan supercomputer that

was used for the simulation.

Further simulations include ¢ƘŜ ˄2GC simulations (Ishiyama, et al., 2015)- the largest of which

contains 550 billion dark matter particles taking 11 million CPU hours and using 50TB of memory

(Ishiyama, et al., 2015, p. 3), and the Bolshoi-Planch and MultiDark-Planck simulations (Klypin, Yepes,

Gottlober, Prada, & Hess, 2016).

One of the attributes that all of these simulations have in common is that they exhibit very large

datasets and have all required extreme computational efforts for them to come to fruition.

3.3 VISUALIZATION TOOLS
In order to correctly visualize data there exists a number of current tools available. These tools must

be able to process massive volumes of data with accurately within a reasonable time. Due to the size

of such data, visualization tools need to be able to be run on computers with intense graphical and

computing power.

A number of open source software tools have attempted to take these large simulations and create

visualizations. One of these tools is ParaView (Song, Zheng, & Shen, 2006). ParaView is an

application built upon VTK (Schroeder, Martin, & Lorensen, 1996) which supports multiple platforms

for its visualizations, which can be performed interactively in 3D. It has support for parallel

processing (Kitware, n.d) and has been used to visualize cosmological simulations (Woodring, et al.,

2011). ParaView can be ran from a desktop computer, as well as within a HPC (high performance

computing) environment, however it is aimed towards the scientific community and has a level of

access which accommodates this.

The same can be said for similar tools, VisIt (Lawrence Livermore National Laboratory, n.d) and

VisIVO (Becciani, et al., 2010), both of which are also based on VTK. VisIVO contains a web interface

ǿƘƛŎƘ ŀƭƭƻǿǎ ǳǎŜǊǎ ǘƻ άǳǇƭƻŀŘ ŀƴŘ ƳŀƴŀƎŜ ǘƘŜƛǊ ŘŀǘŀǎŜǘǎέ (Becciani, et al., 2010, p. 18) however,

ǘƘƛǎ ƛǎ ǎǇŜŎƛŦƛŜŘ ŀǎ ŦƻǊ ǳǎŜ ǘƻ άǘƘŜ ǎŎƛŜƴǘƛŦƛŎ ŎƻƳƳǳƴƛǘȅέΦ Lǘ Ƙŀǎ ŀƭǎƻ ōŜŜƴ ǊŜƭŜŀǎŜŘ ŀǎ ŀ ǎŎƛŜƴŎŜ

gateway which allows standard users the ability to upload and manage their datasets whilst hiding

the underlying technical aspects (Sciacca, et al., 2013).

3.4 SPLOTCH
The two project described in this report concentrate on Splotch, which is ŀ άpublic ray-tracing

softwareΧspecifically designed to render in a fast and effective way the different families of point-

ƭƛƪŜ Řŀǘŀέ (Dolag, Reinecke, Gheller, & Imboden, 2008). It is a high performance algorithm used for

visualizing large particle-based simulations written entirely in C++. Splotch takes time outputs from a

dataset which can be in the tens of terabytes(TB) to produce accurate images of the particles

showing their position and velocities, as well as visualizing density, smoothing length, and other

parameters. Splotch is optimized to run on standard HPC architectures using MPI based approach

(Jin, et al., 2010) with OpenMP. It has also been modified to work with a CUDA programming

paradigm (Rivi, Dykes, Krokos, & Dolag, 2014) to exploit modern HPC populated with GPUs.

8

The main interface to use Splotch is via its parameter files. These are text files which define

parameters for the software, like the dataset location on the system, brightness values, particle

type, and camera position. The Splotch software is self-contained with no dependencies other than

those needed for parallelism, CUDA, and for specific file formats such as HDF5. This makes it highly

portable.

Splotch uses a volume ray casting approach which calculates individual contributions of particles to

the final rendered image by using the radiative transfer equation (Shu, 1991). It supports this with a

parallel implementation which distributes parts of the particles to separate processors, each

producing a partial rendering, which is then composed into the final image. The CUDA

implementation of rendering shows large gains in performance over the sequential processing

version (Rivi, Dykes, Krokos, & Dolag, 2014, p. 17).

Figure 3.4-b Execution model of the Splotch code. From (Dykes, 2014).

Figure 3.4-a Sample renderings in Splotch of small (left), medium (middle) and large (right) data sets. From (Jin, et al.,
2010).

9

3.4.1 Splotch Previewer

The Previewer is an additional module for Splotch which can be used by compiling the Splotch

software with the previewer option in its makefile, and then usƛƴƎ ǘƘŜ Ψ- pvΩ ŎƻƳƳŀƴŘ when running

Splotch.

The Previewer offers an interactive 3D visualization of a dataset within an OpenGL renderer. A user

can control the camera using the keyboard and mouse as well as edit parameters via an on screen

command line. The Previewer can be used anywhere Splotch can on provision that the relevant

libraries are installed. It also can be used to create animations and write to the parameter file.

Whilst the Previewer offers an extra level of interactivity that Splotch does not, it still suffers from a

high level of accessibility for anybody not knowledgeable with Splotch or the environments that

Splotch takes advantage of. There is seemingly a lack of a tool which could be utilised by a non-

scientific user to visualize and interact with datasets.

3.5 CINDER
Cinder is a C++ library with official support for OS X, Windows, iOS, and WinRT (Cinder, 2015a). It

offers support for OpenGL and DirectX. A main function of Cinder is to make coding as simple as

possible with its inclusion of functions that simplify aspects of coding such as primitive drawing (e.g.,

drawCube).

/ƛƴŘŜǊ ǊŜŦŜǊǎ ǘƻ ƛǘǎŜƭŦ ŀǎ ōŜƛƴƎ άŦƻǊ ǇǊƻƎǊŀƳƳƛƴƎ ǿƛǘƘ ŀŜǎǘƘŜǘƛŎ ƛƴǘŜƴǘ- the sort of development

often called creative codinƎέ (Cinder, 2015a). According to Rijnieks (2013, pp. 7-8) creative coding is

άŀ ŦƛŜƭŘ ǘƘŀǘ ŎƻƳōƛƴŜǎ ŎƻŘƛƴƎ ŀƴŘ ŘŜǎƛƎƴέΦ

Processing (Processing Foundation, n.da) is another popular creative coding tool which also supports

various operating systems and OpenGL. However, whereas Cinder is a library that uses C++,

Processing includes its own IDE with its own language (also named Processing) which builds from the

Java language (Reas, 2007). As both Cinder projects (Cinder, 2015b) and Processing projects

(Processing Foundation, n.db) can create very similar results, Cinder seems like the preferred choice

if a user is familiar with C, C# or C++, and Processing the preferred choice if a user is familiar with the

Java language. For the purposes of this project, the decision to use Cinder was a client choice, and

from a technical point of view, as both Splotch and Cinder share a common language, Cinder is

better suited.

As both Cinder and Processing share the common function of creative coding, implementing Splotch

within a Processing application would most likely be able to produce similar results as are described

in this report. However, as Processing uses its own Java like language, the entirely of the Splotch

code would have to be rewritten to support this language. Therefore, Cinder, again, is the preferred

library.

Cinder has been used in an abundance of public projects. One example is a multimedia wall in the

Deutsche Bank, in Hong Kong (Akten, Bereza, Buni, McNamee, & Dörfelt), which creates patterns

and images that are generated in real time. Another is an installation of an interactive LED floor used

ǘƻ ǎƘƻǿŎŀǎŜ ǘƘŜ ŎŀǊ ƳŀƴǳŦŀŎǘǳǊŜ !ǳŘƛΩǎ !н ŎƻƴŎŜǇǘ ŎŀǊ (kollision, 2011). Cinder has also been used

for public outreach projects with the aim of educating a user, such as this installation in New Zealand

which simulates an ocean feeding frenzy (Hodgin, Boil Up: Realtime Feeding Frenzy, 2013), and an

installation in the Canadian Museum for Human Rights (Upswell, n.d) which created an interactive

exhibition aiming to convey a sensitive subject matter in an informative way. Cinder also has been

used to create particle systems such as in the Aether project (Lengeling & Castro, 2014).

10

The strength of Cinder comes from its strength of providing information through its aesthetically

interesting interfaces, along with its ease of use from a developer point of view. Combining this in a

way that take advantage of the SplotŎƘ ǎƻŦǘǿŀǊŜΩǎ ŀōƛƭƛǘȅ ǘƻ ǇǊƻŎŜǎǎ Ǉƻƛƴǘ ƭƛƪŜ Řŀǘŀ ǿƻǳƭŘ ǇǊƻŘǳŎŜ

an application which has a lower level of accessibility than using Splotch directly. As the Windows

operating system has the majority market, and Mac OS and Linux share less than a quarter (Net

Applications, 2016), producing this application on a Windows system would allow it to reach the

largest portion of users.

11

4 METHODOLOGY

This section will discuss the various methodological approaches available, including their advantages

and disadvantages, and discuss the chosen model with justification for choosing it.

4.1 METHODOLOGICAL MODELS

4.1.1 Waterfall Model

The waterfall model is a simple methodology

ǿƘŜǊŜ ǘƘŜ ŘŜǾŜƭƻǇƳŜƴǘ ΨŦƭƻǿǎΩ ŘƻǿƴǿŀǊŘǎ

towards the final release in a sequential

fashion- only progressing onto the next step

when the current step is fully complete. The

waterfall model is advantageous when the

development cycle is known and understood,

as once one has moved onto the next step,

the previous steps are not revisited (Weinstein

& Jaques, 2010). This means that the design is

not flexible or able to be modified. It is a very

strict model and does not account for

uncertainties within the software

development process. The result of its rigidity

means it is also not well suited for client

feedback during the feedback.

A potential supporting argument for the

waterfall method is that more time will have

to be spent in the planning stages of the project, which could potentially identify problem areas, or

help when planning the timeline of the project.

4.1.2 Prototype Model

A prototype model takes the basic structure of

a waterfall model, but allows the development

cycle to effectively go through that structure

multiple times over the course of development

(Bersoff & Davis, 1992). A prototype is designed

and planned, and then produced. This

prototype is then tested and shown to the

client for feedback, which allows it to be built

upon, or a new prototype created. The

advantage of a prototyping model is the

flexibility it gives the developer to revise the

design and implementation following potential

overlooked or unknown problems that may

come up during development. It also allows the

client to be more involved in the process of

development, and hopefully produces a final

Figure 4.1.1-a Waterfall model flowchart.

Figure 4.1.2-a Prototype model flowchart.

12

deliverable which is more in line with their requirements. This relationship with the client can reduce

the risk of wasted time as prototypes are developed over weeks or months, as opposed to the

waterfall model which is a fixed timeline from design to deliverable.

There are various variations to the prototype model, such as throwaway prototyping and

incremental prototyping, however the most appropriate for our project is the evolutionary

prototyping model which is the process of developing an initial prototype which is then refined

following feedback and tests as the project goes on. This results in a very flexible model.

4.1.3 Incremental Build Model

The incremental build model άcombines

elements of the waterfall model applied in an

interactive fashionέ (Pressman, 2005, p. 48).

The first increment of this model produces a

core product which fulfils the basic

requirements of the software, and further

increments contain the supplementary

features. This increment is then reviewed and

tested, by the developer and client, which

allows a plan to be created for the next

increment which details further features and

functionality.

Unlike the prototype model, which focuses on

implementing and testing single features for

each prototype the incremental build model

focuses on creating an operational but

ΨǎǘǊƛǇǇed-ŘƻǿƴΩ ǾŜǊǎƛƻƴ ƻŦ ǘƘŜ product initially

and then building upon this in smaller

increments. It has similar advantages to the prototype model, but it allows for a product to have a

clearly planned and linear path of development to the initial increment, whilst allowing the flexibility

of further features to be reviewed and discussed.

4.2 JUSTIFICATION OF CHOSEN MODEL
Due to the uncertain nature of the validity and potential unseen setbacks of the project, it was

decided to use the incremental build model. The main reason for choosing this model is that the

main bulk of the work involved in the project will be the initial increment of developing the Splotch

software to work within a Cinder environmentΦ ¢Ƙƛǎ Ŏŀƴ ōŜ ŎƻƴǎƛŘŜǊŜŘ ǘƘŜ ΨŎƻǊŜΩ ŦŜŀǘǳǊŜ ƻf the

project and an abundance of planning, understanding, and development will be needed for this

initial increment; which lends itself to the linear approach that the first increment allows. Following

this, the software will need to be assessed and reviewed to evaluate performance and feasibility of

the software as a whole. After this assessment, subsequent features can be discussed and

implemented with the knowledge of how the programs core functionality is performing. An example

situation which lends itself to this model could be that, following completion of the core

functionality, the performance of the software is subpar, this would allow the next increment to

focus on performance following a review of the software. This is a problem which could not be

accurately predicated until the program has had this initial increment, which, when using this model,

allows the development more flexibility to react to potential problems.

Figure 4.1.3-a Incremental build model flowchart.

13

5 USING SPLOTCH WITHIN A CINDER APPLICATION

This chapter will detail the process of creating a Cinder application that utilises Splotch to create a

visualization tool.

5.1 ENTROPY
Ψ9ƴǘǊƻǇȅΩ ƛǎ ŀƴ άŀǊǘ- ǎŎƛŜƴŎŜ ŎƻƭƭŀōƻǊŀǘƛƻƴέ ǘƘŀǘ ŎƻƳōƛƴŜǎ ǇǳōƭƛŎ ǘŀƭƪǎ ƻƴ ŀǎǘǊƻƴƻƳȅ ǿƛǘƘ ŀ ƭƛǾŜ

audio-visual performance (Markovic, 2016). The show is being aimed to be shown at various science,

music, and art festivals around the UK and internationally. The show will be visualizing astronomical

data from various real world experiments, as well as computational simulations supernova

explosions. These visualizations will be accompanied by educational talks and specially produced

musical tracks. The expected audience is expected to be several thousand people within the first

year of the live performances (Markovic, 2016).

5.2 REQUIREMENTS

5.2.1 Gathering of Requirements

Requirements for this project were gathered from one to one meetings with the client from the

Entropy project. Meetings with the client were initially relatively regular in order to get a general

idea of the project, already existing materials, and outline of requirements and work. As there were

multiple chapters to the Entropy project, there were many options for how the work could proceed.

Following these meetings, it was decided that the work on these project should focus on how to

integrate loading large astronomical datasets within a Cinder application. These meetings allowed

the project requirements to be defined precisely.

5.2.2 Functional Requirements

1. Visualize astronomical datasets within a Cinder application-

Existing work for the Entropy project has been built using the Cinder library. As such the

client required the Splotch integration to also be within Cinder. The application must be able

ǘƻ ǳǎŜ /ƛƴŘŜǊΩǎ ƭƛbraries whilst accuracy visualizing datasets.

2. Ability to create images that are alike to Splotch produce images but within a non-HPC

environment-

The Splotch software is written with a HPC environment in mind, but the Entropy project is

aiming to be an educational public project. Therefore, it is important the software has a

lower level of accessibility for a user. This meant that the software should be able to be ran

on a variety of systems, not just Unix environments, for any person who wished to do so.

3. Read and edit Splotch parameter files-

Having the ability for the program to edit the parameter file within the application

streamlines the experience for the user, as they will be able to edit and load as they require,

without having to exit the program or use an external editing tool. This also supports the

ability for the user to move onto using the full Splotch software, as they can use the same

parameter file they are editing here.

14

4. Real time interactivity-

The user should be able to have some kind of control over the visualization once it has been

loaded. This will at least include camera controls, but also the user should have some form

of control over the aesthetics of the visualization in real time. Controls will also aim to be as

intuitive and effortless as possible.

5.2.3 Non-functional Requirements

The software will act as an extension of the existing Splotch software, using its source files as

necessary, in order to create as close an image as possible within Cinder. The accuracy of this image

will be determined by its similarity to the image that the Splotch software would produce of the

same dataset. It will aim to be as performance conscious as possible, in order to minimise the

computational overhead so as to allow for as large a dataset to be visualized, ŘŜǇŜƴŘŀƴǘ ƻƴ ŀ ǳǎŜǊΩǎ

hardware.

The application will, as much as possible, be as accessible to non-scientific and non-academic users

so as to promote the public outreach aspect of the Entropy project.

The final application will be released as an open-source program.

5.3 INITIAL RESEARCH
Following and during the gathering of the requirements, it was important to fully understand the

Splotch software so as to understand how best to approach integrating it into a Cinder application.

As there is no precedent for astronomical visualization software within Cinder, and very little

visualization tools for the Windows platform at all (most use a Linux emulation), there was a large

period of research at the start of the project. At the time of the project, the documentation for the

newest version of Cinder (0.9.0) was not substantial and the majority of the learning was performed

by studying a subset of samples provided to observe how the library worked.

However, the largest portion of time within this period was spent studying the Splotch software. This

required the installation of a Linux distribution, as well as the sourcing of datasets to test the

software with. The documentation for Splotch was almost non-existent which forced the studying of

the software to rely largely on testing, and studying of the code. A substantial amount of help via

conversations with developers who have worked on the Splotch software allowed a better

understanding of its use. Example files were also provided from these developers. At the start of

development, developer experience with the Linux operating system was sparse, and so time was

also spent on becoming familiar with the use of the command line.

5.4 DESIGN
Due to the nature of the application, a large amount of the inner workings of the application would

only be discovered via exploration and testing of the software. It therefore seemed unrealistic to be

able to create an in-depth design document of the code structure, and instead a general overview of

how the software should performed was to be generated.

5.4.1 Proposed Solutions

Following the initial planning stages, a document was produced to propose possible solutions to the

task presented (see appendices). There were two solutions proposed.

15

5.4.1.1 Solution 1- Remotely connect to a Splotch machine, via a Cinder application.

This solution would create a Cinder application which would act as an interface in which the user

could load and edit a parameter file. The Cinder application would act as the front end, providing the

GUI (Graphical user interface) to the user. The application would then send the resulting parameters

to the Splotch software, which would have to ran on a Linux machine, to render the image according

to the set parameters. Splotch would then send the data back to the Cinder application, which would

either, output the image, or use the resulting data to create a 3D visualization.

This solution would allow a user to produce the exact same image as the Splotch software would,

except from a Windows or OSX system, whilst also being easy for them to use.

The drawback to such a system would be that the user will need to have access to a HPC or generic

Linux environment. As the project has an emphasises on being as accessible as it can, and as most

data seems to place Linux market share as being below 2% of users (Protalinski, 2015) (Net

Applications, 2016) this does not support this ideal. Also due to the possibility of having extremely

large datasets as discuss in section 3.2, the data would have to also be stored in the Linux system to

avoid the large amount of time it would take to transfer these to the Splotch software. This could

potentially still be useful for the scientific community, but it also seems to add an unnecessary step

when the user, which would need access to the Linux machine with both Splotch and the data stored

on it regardless, would choose to use the Cinder application on a separate machine, instead of

running the software directly.

5.4.1.2 Solution 2- Creating a Splotch-like Plugin for Cinder.

 A second proposed solution was to use Splotch for the purpose of its readers and other functions to

process the data into a form that a Cinder application could then access and use to create a 3D

visualization on the same machine. The application would function in a similar way to the already

existing Previewer for Splotch, but would be able to run on a Windows machine whilst also providing

a GUI for the user. The image would be calculated via Splotch, and rendered via the Cinder

Figure 5.4.1-a Application flow of remote connection solution.

16

application, which would also be providing the interactivity and offer the opportunity to provide

additional information for the purposes of the Entropy project.

The Splotch software would be compiled within the proƎǊŀƳ ŀƴŘ ōŜ ǊǳƴƴƛƴƎ ƻƴ ǘƘŜ ǳǎŜǊǎΩ machine

without the need for them to have access to a Linux environment. This would allow the application

to produce an image that replicates a Splotch image within Cinder. As the application would be using

the same parameter files that the Splotch software uses, this would also offer the opportunity for a

user to take that same file and run it via the complete Splotch program within a Unix environment.

This solution would satisfy all functional requirements with the only drawback being that the images

produced would not be the same images that Splotch itself would produce, but rather as close as

Ŏŀƴ ōŜ ŀŎƘƛŜǾŜŘ ƻƴ ǘƘŜ ǳǎŜǊΩǎ ƳŀŎƘƛƴŜΦ

5.4.2 Decided Solution

Following positive discussion with the client regarding the solutions, solution 2 was deemed to be

most suitable for the purposes of the Entropy project.

Figure 5.4.1-b Application flow of solution.

17

5.5 TIMELINE
A timeline for the project was designed at this point in time, which can be seen below. Modifications

were made to the timeline during the project due to incorrect estimations. These modifications are

discussed at their relevant time in section 5.7. Further modifications were also made to the timeline

due to the TAO project (discussed in section 6).

Task Name Duration Start Finish

Research 48 days Thu 08/10/15 Sun 13/12/15

 Initial meetings and outline of project 13 days Thu 08/10/15 Mon 26/10/15

 Understanding Cinder 11 days Tue 27/10/15 Tue 10/11/15

 Understanding Splotch 24 days Mon 09/11/15 Thu 10/12/15

 Deliverable 1 Preparation 2 days Tue 01/12/15 Wed 02/12/15

 Presentation 0 days Thu 03/12/15 Thu 03/12/15

Implementation 46 days Mon 14/12/15 Sun 14/02/16

 Planning Implementation 7 days Thu 03/12/15 Fri 11/12/15

 Coding 40 days Mon 14/12/15 Fri 05/02/16

 Testing 46 days Mon 14/12/15 Sun 14/02/16

Write Up 27 days Mon 15/02/16 Tue 22/03/16

Deliverable 2 deadline 0 days Thu 24/03/16 Thu 24/03/16
Table 1 The original timeline for the project.

5.6 IMPLEMENTATION
The implementation of the application took the form of creating incremental prototypes, where the

initial prototypes were the bulk of the work, and each sequential prototype added features onto the

application in smaller increments. Each prototype would then be tested thoroughly before moving

on. The focus was on getting the application to have its core mechanics working before moving onto

code optimisation. Additional features could then be added at a later date.

This section will describe an overview of how the application is working, and then provide a look at

its prototype iterations.

5.6.1 Development Tools

As briefly discussed under in section 5.3, the latest version of Cinder (0.9.0) did not have a

substantial amount of documentation available, with the majority of information available being for

the previous version (0.8.6). This meant that there would be a longer period of learning for the

newest version of Cinder, as a more thorough studying of the provided samples would be necessary.

However, as the 0.9.0 version of Cinder has a completely rewritten OpenGL API (Cider, 2015c) it was

decided that the application will use the most up-to-date version available in order to be as

compatible as possible moving forward.

The IDE (integrated development environment) that was used was largely decided by its

compatibility with Cinder. Both Microsoft Visual Studio 2013 and Microsoft Visual Studio 2015 are

Ŧǳƭƭȅ ǎǳǇǇƻǊǘŜŘ ōȅ /ƛƴŘŜǊ лΦфΦлΣ ƘƻǿŜǾŜǊ ƻƴƭȅ ǘƘŜ ŦƻǊƳŜǊ ƛǎ ǎǳǇǇƻǊǘŜŘ ǳǎƛƴƎ /ƛƴŘŜǊΩǎ ¢ƛƴŘŜǊōƻȄ

application- an application which can correctly set up a Visual Studio project with Cinder for the

user. It was therefore decided to use Microsoft Visual Studio 2013 as an IDE, as the project can

always be easily ported to the 2015 at a later date if necessary using Visual Studios in built tools.

18

5.6.2 Integration with Splotch

The main resource for the application was the Splotch software. This meant that the application will

attempt to use as much as the original source code as possible in order to reduce its physical size on

disk and also reduce the need for code to rewritten. It also serves the dual purpose of processing the

data in the exact way that the Splotch software would. The main reference for how this application

would integrate the Splotch software was the already existing Previewer application within the

Splotch source files. The Previewer code was used as a basis for an interface between the Cinder and

Splotch code.

It was decided that the Cinder application would have its own edited version of the Previewer source

files instead of accessing the original files as it does with the core Splotch functions. The reasoning

for this was so the Splotch Previewer, and the Cinder application could function as two branches out

from the core Splotch without interacting with one another. It would allow each program to be

edited and produced separately. As they are both intended for different platforms, this would

eliminate any potential conflicts as well as allowing each to play to the strengths of its respective

platform.

The main changes to the Previewer files were:

¶ Removal of redundant code- the rendering and user interactivity for the application will be

done via functions provided by Cinder. A large amount of the functionality in the Splotch

Previewer was therefore unnecessary and removed. This also increasing code readability.

¶ Porting of code for use on Windows- this included using the appropriate equivalent

Windows libraries. It also included changes in the way the application reads the file path due

to the difference in file systems between the two operating systems. E.g., Windows using

backslashes in place of forward slashes.

¶ Editing functions to work within the Cinder application- certain functions had to be edited

in a way that the Cinder application could use them in a logical and efficient way.

The core Splotch code also had to be edited minimally in order to be compatible with the Windows

ƻǇŜǊŀǘƛƴƎ ǎȅǎǘŜƳΦ ¢ƘŜǎŜ ŜŘƛǘǎ ǿŜǊŜ ŘƻƴŜ ǳƴŘŜǊ ŀ άWINDOWSCINDERέ macro definition so as to

interfere as little as possible with the original code. The main edits made to the core Splotch code

were made in order to allow it to compile on the Windows system and include changes to included

libraries, and an added function. The Cinder application does not have its own copies of the Splotch

code, and instead its functions are called from within the edited Previewer files.

19

5.6.3 Cinder Interface

The interface for the application is created using Cinder functions within the SplotchCinder class-

The SplotchCinder class holds an instance of the Previewer class and an instance of the

CinderRender class as can be seen in the above class diagram. This is the top level class

responsible for managing the entire application. The main loop of the application is handled by the

ΨCINDER_APPΩ macro which is provided by the Cinder library.

When the application is loaded, the user will be presented with a Windows explorer window which

will allow the user to find and select the parameter file that they wish to use for the visualization.

¢ƘŜ ŜȄǇƭƻǊŜǊ ǿƛƴŘƻǿ ǿƛƭƭ ƻƴƭȅ ŀƭƭƻǿ ǘƘŜ ǳǎŜǊ ǘƻ ǎŜƭŜŎǘ ŀ ŦƛƭŜ ǿƛǘƘ ǘƘŜ Ψ.par Ω ŜȄǘŜƴǎƛƻƴΦ ¢Ƙƛǎ ŀŎǘǎ ŀǎ ŀ

failsafe for the system in the case a user tries to select something other than a parameter file.

The application wilƭ ǘƘŜƴ Ǉŀǎǎ ǘƘŜ ǇŀǘƘ ǘƻ ǘƘŜ ŎƘƻǎŜƴ ǇŀǊŀƳŜǘŜǊ ŦƛƭŜ ƛƴǘƻ ǘƘŜ tǊŜǾƛŜǿŜǊΩǎ

ΨLoadParameterFile Ω ŦǳƴŎǘƛƻƴ ǿƘƛŎƘ ǿƛƭƭ ǳǎŜ ǘƘŜ ŦǳƴŎǘƛƻƴǎ ǿƛǘƘƛƴ {ǇƭƻǘŎƘ ǘƻ process the file and

return a reference to the class which the parameter information is stored in. The creation of the GUI

is then performed using the fields within the parameter file. This process is performed dynamically

using a combination of Splotch and Cinder functions, and a dynamic multidimensional array. Writing

the function this way allows the application to be able to load any number of parameter file

variables and their fields. This is important in order for the application to keep up to date with any

updates to the core Splotch functionality which may require new fields within the parameter file.

Once the parameters from the parameter file have been loaded into the application and displayed in

a parameter menu, the user can freely edit these values and save back to the file. Whilst all of the

parameters are editable, not every parameter effects the image produced in this application. It was

however decided that it was important to include the entirety of the fields regardless of their effect

on the final visualization so as to allow the application to act as a complete entry to exit point for a

Figure 5.6.2-a Application class diagram.

20

user to load, edit, and visualize data via Splotch on Windows. It also allows a user to take a

parameter file edited within this application to use on the full Splotch software.

It was decided to use Cinders built in interface functions as it allows the application to quickly add

functionality which includes the ability to bind a function to a butǘƻƴ ƻƴ ǘƘŜ ƳŜƴǳΣ ǎǳŎƘ ŀǎ ǘƘŜ Ψ[ƻŀŘΩ

button. It also serves to keep the applications size to a minimum by using functions already included

in its libraries.

5.6.4 Cinder Renderer

The renderer within the application is a very crucial part of the entire visualization application, as it

produces how the application will visualize the data. As the application has the ability to deal with

very large data sets with potentially millions of particles, it was also important to implement it in a

way to attempt to keep as high a framerate as possible, with further thought to keeping the

framerate at a stable point.

The render starts by loading the applications shader assets into memory, and setting the cameras

clipping plane. The clipping plane is set to an appropriately high number so it can include all particles

from the dataset which can potentially span distances outside the range of the default values within

the virtual space.

The list of particles is then assigned to a new variable by calling a function from the Part icleData

class which was passed into the renderer. Particle positions and respective colours are loaded into

the shader via two SSBOs (Shader Storage Buffer Object) and drawn using an index buffer. SSBOs

were chosen over UBOs (Uniform Buffer Objects) as they have the capacity to be as large as the

graphics card memory limit (JeGX, 2014) which is helpful towards being able to render as many

Figure 5.6.3-b Examples of loaded parameter files. The leftmost part of the image shows the parameter menu after having
loaded the visualization- The upper most values above the separator are real time parameters that affect the renderer.

Figure 5.6.3-c Code snippet of loading GUI parameters.

21

particles as possible. The position SSBO is required to be a vec4 for it to be able to be multiplied

with the model matrix within the vertex shader. The colour alpha is always set to 1.

Particles are drawn after invoking the glBlendFunc function in order to blend particle colours

together where they overlap and simulate transparency. This results in an image which has a more

realistic simulation of colours.

A Gaussian blur is also created on the image by rendering the particles to a FBO (Frame Buffer

Object), then passing this FBO through a Gaussian blur shader twice to create horizontal and vertical

blur FBOs which is then drawn over the first FBO via additive blending.

The index buffer is arranged in a regular way to create two triangles into a quad. Which is then

computed into a circular sprite in the shaders and allows the application to present particles as 2D

elements within the 3D space, known as billboards. This is for the purposes of performance within

the application and the reason for using this method will be discussed in a further section.

5.6.5 Shader assets

The application currently computes the particle screen positions and colours using shaders. Shaders

are computed on the GPU which means they are generally much faster in comparison to CPU

computations (Rayne, 2014), in some cases this can up to 25 times as fast (Christensen, 2011). Using

shaders with Cinder is relatively simple as it uses the GLSL shader language and even contains a class

for easily loading a shader program. Computations were performed on the vertex shader when

possible as a calculation on a fragment shader is much more expensive than a calculation on a vertex

shader due to the fragment shader being executed once per pixel and pixel quantity in a scene

generally outnumbers vertex quantity (Microsoft, 2016a).

As previously discussed, the vertex shader for the application takes the position and colour SSBOs

and uses them to compute a circular billboard sprite. It takes four vertices per particle maps those to

a quad vertex. Using these various variables, along with the projection and model matrices, it

computes the position so that the sprite will always be facing the camera within the application.

Figure 5.6.4-a Code snippet of mapping particle position and colour into the SSBOs.

Figure 5.6.5-a Code snippet of the vertex shader.

22

When this information is then passed into the fragment shader, the sprite is still quad shaped. The

fragment shader computes the circle sprite by finding a specified radius of a circle from the centre of

the quad. If any fragments are beyond that, they are discarded.

Within the vertex shader the final colour for the particle is computed using its existing colour and

any modifiers that are applied to it via the parameter menu. These can include brightness, contrast,

and saturation.

A Gaussian blur can also be toggled on and off for the final visualization. This is done via a fragment

shader using an offset specified by the user. If a user toggles the blur on, then, during the rendering

stage of the pipeline, the FBO that the particles are drawn into are drawn into a second FBO via the

Gaussian blur shaders. This is performed twice- once for the horizontal blur, and a second time for

the vertical blur. The results from the second FBO are then drawn over the initial FBO via additive

blending. This creates the final blur effect on the visualization.

A Gaussian blur is also used in the full Splotch software, and so this feature supports the

requirement for creating images that replicate Splotch produced images. The result creates a much

nicer final image, with particles that appear to be brighter when in close proximity to one another.

Figure 5.6.5-b The Gaussian blur fragment shader.

23

Figure 5.6.5-d A cropped image of the blur off.

Figure 5.6.5-c The same image with the blur on. Notice how areas with a higher density of particles appear brighter.

24

5.7 PROTOTYPES

5.7.1 First Prototype

The initial prototype for the application came in the form of using Cinder to read in a text file filled

with random x, y, z coordinates. It would then render a sphere in each position. This was useful in

order to identify the best way to render shapes within Cinder. Whilst the method that was used in

this prototype was easy to implement and use, it ultimately suffered bad slowdowns from using just

10,000 points. This was far away from the amount of points the application could potentially be

drawing, and so a new method would have to be conceived going forward.

This prototype was completed under the period of time of learning Cinder in preparation for the rest

of the project.

5.7.2 Second Prototype

The next few prototypes focused on the best way to integrate the Splotch files into the application

and allow it to be compiled. The method for achieving this, was to identify which function in which

file was needed to called from Cinder in order to retrieve the list of particles. At this point in time,

the plan for the application was to use only the reader files from Splotch (and any relevant includes

needed), and take the relevant particle list after using these- without the need to use the Previewer

files. However, it seemed counter intuitive to disregard how the Previewer was working with the

Splotch readers when it was performing a similar function to how the Cinder applications integration

with Splotch was being planned. Therefore, it was decided for the pipeline to go through the

Previewer files as they offered a framework which was already integrated with the core Splotch files.

After this point, the Previewer files were slowly added to the project one by one, meticulously

resolving errors as they came up- the majority being from the differences in platform the software

was ran on. The rendering portion of the files were all commented out, as the focus was on simply

allowing the application to include and compile with the relevant Splotch and Previewer files. Any

and all files were included if they were used by Splotch, regardless of whether the Cinder application

would need them in the final application. This was to reduce time spent on porting files and classes

which would not end up being used in the final application. Eventually the application was compiling,

however no functions from Splotch were yet to be called. The application in itself, was just creating a

window.

5.7.3 Third Prototype

The next prototype was focusing on allowing the application to specify a parameter file and being

able to pass this into Splotch. When running the original Splotch, the path to the parameter file is

specified in the command line. As the application would not be running from the command line, the

path to the file was hard coded for the purposes of testing. The main problem in this prototype was

adapting the way the Previewer manipulated the parameter file path due to the difference in file

systems on a Windows and Linux system. One example of this was modifying the way the application

finds the path its exe file. Which can be seen in the figures below. The variable containing the path

to the exe does not end up being utilised in the final application, but at the time the prototype was

attempting to emulate the same functionality, but on the Windows platform. The final state of this

prototype had the application finding and utilising the parameter file, feeding the data into its

appropriate reader, and attempting to read that data. It was at this point that errors were occurring

due to out of range memory copies.

25

Time taken unsuccessfully attempting to fix these errors meant that the approaching deadline for

the end of the coding period in the original plan had to be adjusted, as it would no longer be an

accurate estimation.

5.7.4 Fourth Prototype

Following the successful implementation of the application finding and attempting to read the data,

the next prototype focuses on solving the memory errors, as well as how we could visualize the

particles within Cinder. Since the previous prototypes had been using a 9.24GB sized dataset, the

application was tested on a smaller sized dataset to identify if this was the issue. Following tests on a

46MB sized dataset the application was able to successfully compile and load the data. This data was

Figure 5.7.3-b Code snippet of part of the original load function for finding the path of the exe of the application.

Figure 5.7.3-a Code snippet of the modified function to work on Windows.

26

not being rendered on screen at this

point however. The particle list that was

produced by Splotch was haphazardly

fed back up through the pipeline of the

application. The original renderer from

the first prototype was then edited to

work with this particle data. The

application was able to render spheres

in the positions that were read from the

data.

Due to the heavy performance from

trying to render around 370,000

spheres in this dataset, the application

had to be set to only render a

hundredth of the particles. As the strain

from even rendering a hundredth of the particles was so high, the camera controls were not working

correctly. This lead to the particles positions being scaled down so they could be seen by the camera

more easily.

This prototype was the proof of concept that Cinder was able to correctly communicate with Splotch

in order to render datasets.

5.7.5 Fifth Prototype

It was obvious that the renderer was not going to be able to render the particles in their correct

positions as spheres, as this would strain the system massively. Therefore, this prototype was

focused on creating a renderer which would be able to visualize the data in a meaningful and

accurate way.

Initially it was planned to use the renderers that were included in the Previewer, so as to produce

the same visualization, but via Cinder. A large amount of time was spent attempting to get these

renderers to implement correctly with Cinder, however there were many compatibility problems

which prevented this. These include OpenGL version discrepancies as well as platform differences. It

was decided therefore to dismiss this plan, and write a dedicated renderer using Cinder functions.

Ultimately, this seemed like the option that better suited the functionality requirements listed. As

the application was using Cinder regardless, it should therefore attempt to use it in its fullest extent

in order to exploit all advances that it offers.

Figure 5.7.4-a Screenshot of the dataset being displayed as spheres.

Figure 5.7.5-a Screenshot of the data being rendered via the initial Cinder renderer.

