University of Portsmouth
School of Creative Technologies

Final Year Project undertaken in partial fulfilment of the requirements folBi&e (Honours)
in Computer Games Technology.

How canthe high performancevisualiation tool Splotch beadapted toproduce
cosmological images two distinctcomputingenvironmens?
By
Elliott George Ayling
614173

Supervisor: Mel Krokos
Project Unit: CT6CTPRO
March 2016

Project Type: Artefact

Abstract

Twoclient basedorojects are presented in this report. Batise the raytracer software tool
Splotch, vhich supports effective visuadiion of cosmological simulation datdhe aim was
to create applications which focus on providimgtimisedand accessible functions for use in
cosmological ad astronomical visuahtion. The first is an application made with the
artistically focused C++ library Cinder, and is designed to offer an easy tmolise interact
with 3D visualiations of cosmological datasets an accessible platform, and is the first of
its type wihin CinderThe second shows the adaptation and implementation of the Splotch
software on the gSTAR supercomputer for the purposes of the Theoretical Astronomical

Observatory. The result of which has a focus on optimisation whilst also adding functionality

to automate parts of the Splotch softwarevith the aim of lowering the level of aceasility
to produce the visualaion imagesThe culmination is eeport which can act as a guide for
any projects which aim to pursue similar goals.

1 GONTENTS

2

3

LTiqoTo (U1t o] o BN P PP PP PR PUPPP PP 5
2.1 PrOJECE OVEIVIEW.cc i i i i i e ettt e e e e e e e e et e eeeeaaaaaaaaaaaaaaeaeeeeseaaaaaaaaaaans 5
LIEIatUIE REVIEW ettt e e e e e e e e e e e e e e e e e e s e s nbreneeeeeeaannes 6
0 N | 011 0T U Tt i o] [OOSR PPP O PPPPPRPPPP 6
3.2 SIMUIALIONS. ...t e e e e e e e e s e e e e e e e e nnnnreaesd 6.
3.3 ViISUANIZALION TOOIS....ceiiiiiiiiiie ittt e e 7
B4 SHOLCH e 7
3.4 1 SPIOLCN PrEVIEWEL.......eeiiiiiiiiiieiie et e s 9
I T O[5 To [T PR PERPPPP 9
=Y T o] oo Y PP PR 11
4.1 Methodological MOUEIS..........cooiii e 11
411 Waterfall MOGEL........c.uuviiiiiiiei e 11
4.1.2 Prototype MOGEL.......ooo e 11
4.1.3 Incremental Build MOEL............ooooiiiiiie e 12
4.2 Justification of ChoSEN MOEL...........oceiiiiiiiiiiii e 12
Using Splotch within a Cinder applicatiQn............ccccccviiiiiiiiiiiiiiieeeeeeer e 13
0 R 1 01 (o]) ST 13
5.2 REQUITEIMENTS ...ciiiiiiiiiii ettt e e e e e e e s s e e e e e e s bnr e e e e e e e aannnneeeeeeas 13
5.2.1 Gathering Of REQUIMEIMENLS.......cccoiiiiiiiiiiieeiesiitiee et 13
5.2.2 Functional REQUIFEMENIS........ueiiiiiiiiiieiiee e 13
5.2.3 Nonfunctional REqQUIFEMENTS...........oooiiiiiiiiii e 14
5.3 INItIAI RESEAICH......oiiii e 14
ST B 1= o[RO PP PP PPPPPPPRPP 14
5.4.1 PropoSed SOIULIONS.........uuiiiiiieeee e 14
5.42 DeCided SOIULION.......cciiiiiiiiiei ettt 16
5.5 TIMEIINE ... 17
5.6 IMPIEMENTALION. ... e e e e e s 17
5.6.1 DeVelOPMENT TOOIS. ..o 17
5.6.2 Integration with SPIOtCh........cccoo s 18
5.6.3 CINAEr INEITACE.......ciii i 19
5.6.4 CINOEI RENUEIEN......coii ittt e e ees 20
5.6.5 SNAUEI @SSELS......cuiiiiiiiiiiiiiiei e 21
T A o (01101 01 TSRS PTPPPTPT 24
5.7.1 1S A o 01001 o= U 24

5.7.2 SECONU PrOtOLYPE.t iiiiit ettt e e e e e e e e e e e e 24

5.7.3 Third ProtOtYPe........eiiiiiieiiiiiei et e e e 24
5.7.4 FOUMN PrOtOtYPE.ottt e s e e e s s aesseanaaaans 25
5.7.5 FIft PrOtOtYPE. ..o e e e e e e e e a e e e e e 26
5.7.6 SIXtN PrOtOtYP@...cc oot 27
5.7.7 EIQNT PrOtOtYPe. ..ot 28
5.7.8 N T gL (T = (0] (0] 47 1= 29

L= T =71 1] o PP 30
5.8.1 White andBIlackBoX TeStNG.........ccooviiiiiiiieiii e 30
5.8.2 Module (UNIt) TESHING......uueeeeieiiiiiiiii e e e 31
5.8.3 Testing IMPIemMENTAtION.ccuiiiiiie et 31

5.9 Evaluation and FULUre WOIK..........coccuuiiiiiiiiiiiiie et 32
5.9.1 RS 1 0] 41T Y USRS 32
5.9.2 Performance and OptimiSation............ccoceiiiiiiiiniiiiiierr e e e e e e e e 32
5.9.3 MEENOTOIOGY. ...ttt e e s e e e 33
5.9.4 FUMNEI FEAIUMNES ..ottt e e e e e 33
5.95 RECOMMENTALIONS.cciiiiiiiiiiiiii ettt e s 34

6 Integrating Splotch for use on the Swinburne gSTAR Supercomputer.............ccccceunnnns 35
6.1 INETOTUCTION. ... ittt e e e e e e e e e s e e e e e e e e ansbrneeeeeeeaan 35
6.2 INItIAl PlaNNiNG.........ooiiiiiiiiii e 36
6.3 Adaptation of the HDF5 REAE..........coiiiiiiiiiiii e 37
6.4 FUIMNEI WOTK.....eiiiiiie ettt e e 38
6.5 OptimISAiON and TESHUNG.......cooe i e e e e e e e e e e e e e e e 40
6.5.1 BeNCRMAIKS. ... 40
6.5.2 FUrther OPtiMISATION.oiiiiiiiiie e e neeeees 42

6.6 Evaluation and FULUre WOIK............cceiiiiiiiiiiiii et 43
6.6.1 RS 0] 1T 7P 43
6.6.2 PeITOMMEANCE.....coiiiiiiiiiiie et 43
6.6.3 WOIKIIOW.....ciiiiiiiieic e 43
6.6.4 FULUIE WOTK. .. e e e e e e e e e e e e aaeaeas 43

7 Conclusions and EValuatiQn..............ccooriiiiiiieoiiiieeeee e A
0 R U [01 0 1 1= Y PP PP PPPPUPPPPPY

8 TaADIE OF FIQUIES....eeeieiii ettt e e e st e e e e e e nane e e e e 45
LS B =11 o] [oTo [£= T o] 1)V R PP PP PPRPTP 46
10 Appendix 1- Client proposal dOCUMENL..........ciiiiiiiiiiiiiiie et 52
11 Appendix 2 Splotch Manual First Draff..............eeueeiieiiiiiiiiceeee e 53

12 APPENAIX BTESE CASES.....uuieeiieeiiiiiiii et e e e e e e e e e e s e e e e e e e s r e e e e e e e annrnees 57

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10

165 0 o (0] (611 01T PP PRSP PPRPPPO 57
Y= ToT] oo I = 0] (011 o = PP PPPPRRR 58
B I 110 I 2 (0] (0] 37 =3P PPPRRP 59
FOUMN PrOTOTYPE.....eeeieeeiiiie ettt e e e s e e e e e 60
11 I (0] (6] o1 PP PPPPPPPO 61
SIXIN PrOtOtYPE. ..o e e e e e e e e e e e e e e e e s e 62
YV LT o (T o 0 (0 1Y/ o1 63
o | L0 d o) (0177 01U UURPURRRRRY 64
NINTN PrOTOLYPE. ...t e e e e e nrnnnneeeee e e e 66

NOT TESTEA. ..t e e e e e e e e e s e e e e e e e s nbrn e e e e e e e nanns 68

2 INTRODUCTION

46 years ago, on July 21 198% world watched as Neil Armstrong descended from the Apollo
spacecraft and became the first hamto step foot on a world that was not our owhhe image of

Neil Armstrong walking the lunar surface, and the words he spoke when he did have become
immortalised in time, and have served to inspire countless generations of children, including a future
commander of the International Space Stati®vall, 2012) The achievement of the first lunar walk
was a huge accomplishment at the time, but has served to accomplish even more through the
actions of those it inspiredut, withthe final Apollo mission having concluded 44 years ago, the
majority of the exciting scientific discoveries and accomplishments since have been performed with
pen and paper, and more recently, computers. So how can science, and the people behind it,
attempt to emulate the excitement and fevdi6 years agof seeing a manand hisspectacular
smallstep.

Science outreach programs aim2 G aA YdzZ F S AyGaSNBad FyR (2 SyO2dz
I LILIX A O { A 2 yEdvais2@16) A eyhayS aldng history, a famous example of which is
aAOKIFSf CIFNIRI&Qa / KNX a i Shndple[2@EwhidrNiBd the SINAfS & & G I NI
AYGNRRdAzOAY 3 al @&2dzy3 | dzRA S ySOr2R yiia2l NI(Reyal2ogi®eh) § K N2 d
n.d). In a timewhere technology plays such a key role in both personal, and scientific amaisce

outreach programs must, too, evolve and adapt to the ever changing landscape.

2.1 PROJECODVERVIEW

This report will speak about two separate client based projects. The first is a project for The
P'YAGSNBAGE 2F t2NlayYz2dzi KQa LWIAGIIANRSThR pFddcR2 BAYER f 2 =
is for the purposes of the agcience collaboratioperformance, Entropy. Entropy is a public talk

about the history of the universe, accompanied by a live audioal performance. The primary

objective of the project is to create an application whieim support cosmological visualtions in a

format that is easy and accessible for the public, in the same vein as the goals of Emtrigpyakes

GKS FT2NXY 2F Iy FLWLXAOFIGAZ2Y dzaAy3a (GKS /bbb f A0 NI NE
Ay (i &Ojhdeé, 2015a)The appliation created for this artistic environment will be described in

detail in section 5.

The second project is also a client based project, buCfaudio Ghellerthe Scientific Community
Engagement Group Lead at the Swiss National Supercomputing Certtiis,are of the developers
for the focused software in this report, Splotch. Through Claudio the project will involve adapting
Splotch for the purposes of the Theoretical Astrophysical Observatory(TAO) on the gSTAR
supercomputing system operated by t@erire for Astrophysics and Supercomputing, based out of
the Swinburne University of Technology in Melbourne, Australia work performed for this

project will be discussed in section 6.

Both projects present a unique opportunity to develop Bpgtions that focus oeasilyvisualring
cosmological datasets but in two very different environmeiitse first isor the artistic and
atheistically focused Cinder communityho are not necessarily knowledgeable of the technical
skills needed to worlwithin a high performance computing environment, and the second is for the
astronomical scientific community which TAO serves through a focus on optimised and effective
supercomputing systems.

3 LTERATUHRREVIEW

3.1 INTRODUCTION

One of the more prevalent questions that modern science aims to understdnuhithe formation

of structures within the universe were creatsdme 1382 billion years ago following thBig Bang
(Europeon Space Agency, 20iByrder to gain an understanding of the universe as whaléuge
variety of factors came into play at the creation of the universgcv led to the increasingly
complex structures that we have today. The results of this has led to adoption of techmiopies
tools which are designed in a way that attempidully describe and explain such a fundamentally
complicated system of stars, gases, and galaXies.data which these techniques produzm

range frommegabytesn size(Goldbaun, 2011) to petabytes and moré_erner, 2015)andsoa

need is created in order to explore this data in a visual and intuitive way.

Visualiationis a way to look at these huge data sets in a way thawallus to undertsnd the data
in a communicative wayosarg2007)defines data visualiion as being:

1. Based on (norvisual) data the data must come from outside the program and the program
must be able to work on different datasets.

2. Able to produce an image The goal of the visuaiion must be producing one or more
images as its means of primary comnmuation of the data. The visuaiton must be able to
stand on its own.

3. Able to produce a readable andecognisable resultThe result must be understood by the
viewer, even if this requires training or practice. The use of additislementsis possible,
but must not take precedence over comunication goals of the visuaditzon.

Therefore, a visualiion $ould createéimages that are both intriguing and informative whilst also
serving the scientific purpose of allowing us to represent numerical values in a meaningful system.

3.2 SMULATIONS

In order to visualie this data, they must first be produced, and inler to realistically do so, there
exists a number of methods which produce numerical simulations used to simulate these various
structures of the univers@olag, Borgani, Schindler, Diaferio, & Bykov, 2008)

One such examplef thesesimulationsis the Millennium Simulatio{Springel, et al., 2005)vhich

uses a modified version of tteADGETRode(Springel, Yoshida, & White, 20@&)simulate 2,168
particles.The Millennium Simulation used 512 processes of a parallel computer at the Computing
Centre of the MaPlanch Society, almost 1TB of memory, and required around 350,000 core hours,
or 28 days of walltim¢Springel, et al., 2005T his was considered the best large cosmological
simulation for a number of yearalong with the Millenniurl simulation(BoylanKolchin, Springel,

White, Jenkins, & Lemson, 2008)t has now been to shown to have used olese parameters

which are considered to be inaccurgtetephens, 2011Yhe higher resolution and more accurate

Bolshoi Simulatiomwas introduced in 201{Klypin, TrujilleGomez, & Primackjvhich boasted

GySENXI & |y 2NRSNI 2F YIF3AyAddzRS MiBnnidndNdzyYelda a | Yy R

Further simulations include those introduced by the Illustric Prajéogelsberger, et al., 2014)
which produced230TB of cumlative data volumesThe largest of these simulations took 19 million
core hours to producéThe lllustris Collaboration, 2015)

T 2

More recent visual&tions includeone of the largest namethe Q Continuum simulatiofHeitmann,
et al., 2015)which is a simulation carried out on a G&dd¢elerated supercomputer, and involves
more thanhalf a trillion particlesThe raw output of the Q Continuum simulation is approximately
2PB (petabytes), a factor of 100 increase compared to the Millennium simu(&tetmann, et al.,
2015, p. 5pnd it used almost 90% of the 18,688 computer @@ df the Titan supercomputer that
was used for the simulation.

Further simulations includé K 8GCssimulationdshiyama, et al., 2015the largest of which
contains 550 billion dark atter particles taking 11 million CPU hewand using 50TB of memory
(Ishiyama, et al., 2015, p.,3nd the BolshaPlanch and MultiDarRlanck simulationlypin, Yepes,
Gottlober, Prada, & Hess, 2016)

One of theattributes that all of these simulations have in common is that they exhibit very large
datasets and have all required extreme computational effddr them to come to fruition.

3.3 VISUALIETIONTOOLS

In order to correctly visuakzdata there exists a numbef current tools available. These tools must
be able to process massive volumes of data with accurately within a reasonable time. thaesize

of such data, visuaktion tools need to be able to be run on computers with intense graphical and
computing power.

A number of open source software tools have attempted to take these largdations and create
visualiations.One of these tools is ParaVié®&ong, Zheng, & Shen, 200BaraView is an
application built upon VTEchroeder, Martin, & Lorensen, 199@)ich supports multig platforms
for its visualiations, which can be perfored interactively in 3D. It has support for parallel
processindKitware, n.dandhas been used to visuadizosmological simulatior{§/oodring, et al.,
2011) ParaView can be ran fromdesktop computer, as well as within a Hfp@h performance
computing)environment, however it is aimed towards the sciéictcommunity and has a level of
access which accommodates this.

The same can be said feimilar tools, Visl{Lawrence Livermore National Laboratory, radj

VislVQ(Becciani, et al 2010) both of which are also based on VTK. VisIVO contains a web interface
GKAOK Fff2g¢ga dzaSNAR (2 & d{BEcdaniRetal, PARO, N UxwedS (G KSA NI F
GKAA A& aLISOATASRIANTAA G 2012 WXARY AiRe «ad KISGT arOAa | f a2 o
gateway which allows standard users the ability to upload and manage their datasets whilst hiding

the underlying technical aspecfSciacca, et al., 2013)

3.4 SPLOTCH

Thetwo project described in this report concentrate &plotch whichis| public raytracing
softwareXspecifically designetb render in a fast and effective way the different families of point
f A1 S (DRlagiiReifiecke, Gheller, & Imboden, 20083 a high performance algorithm used for
visualimng large particldbased simulationgrritten entirely in C++Splotchtakestime outputs from a
dataset which cambe in the tens of terajtes(TB) to prodce accurate images of the particles
showing their position and velocities, as well as vigigdensity, smoothing lengthand other
parameters Splotch is optimized to run on standati# Carchitectures using MPI based approach
(Jin, et al., 2010)ith OpenMPIt has also been modified to work with a CUDA programming
paradigm(Rivi, Dykes, Krokos, & Dolag, 20b4@xploit modern HPC populated with GPUs.

Figure3.4-a Sample renderings Splott of small (left), medium (middle) and large (rigt) data ser®m(Jin, et al.,
2010)

The main interface to use Splotch is vigp@sameter files. These are text files which define
parameters for the software, like the dataset location on the system, brightness values, particle
type, and camera position. The Splotch software isgaitained with no dependencies other than
those needed for parallelisnf€UDAand for specific file formats such as HDHais makes it highly
portable.

Splotch uses a volume ray castaggproach which calculates individual contributions of particles to
the final rendered image by using the radiative transfer equat®mu, 1991)It supports this witta
parallel implementabn which distributes parts of the particles to separate processors, each
producing a partial rendering, which is then composed into the final imBge CUDA
implementation of rendering shows large gains in performance over the sequential processing
verspn (Rivi, Dykes, Krokos, & Dolag, 2014, p. 17)

Binary Data Files
(various formats, single

A or multiple files)
12}
29 |
o <
ES
55
° : y
oc Binary Readers| Gadget2 Readef Ramses Reader| [Enzo Reader
2 % MElReader tabular, blocks (native) (native) (native) pesliRcador [EDES Roader
3 <
H e fesmme
> ; Data Processing E 3 5
o - : (normalization, logs...) ') o
o S . ' >0 I
c o ' A o0 e
— '? O : = : 5573 o
o] ; Rasterisation : 2 8 2 =
= 8 5 : Data roto-translation, : gLg i
59 : projection, coloring 1 o ® 2 =
Bg| e ' 5 c
© R N e i " 0B 2 8_
i ; X 05
Q8 : = =0 o
Q ' Rendering - Ray casting ' § 0 P
(image calculation by solving the ' b g
: radiative transfer equation) : @ O
: . :
T Composition of the final image
2 : (Reduce) :
3 ; :
o e o 37 0 1w -
o
Q A
% Save image
2 (tga, ppm)

Figure3.4-b Execution model of the Splotch cofieom(Dykes, 2014)

3.4.1 Splotch Previewer

ThePreviewer is an additional module for Splotch which can be used by compiling the Splotch
software with the previewer option in its makefile, and therhug 3 - gv® S O ® Ywhen/fuRining
Splotch.

The Peviewer dfers an interactive 3D visuadition of a dataset within an OpenGL renderer. A user
can control the camera using the keyboamd mouseas well as edit parameters via an on screen
command lineThe FPeviewer can be usedgwhere Splotch can on provision that thedevant
libraries are installedt also can be used to create animations and write to the parameter file.

Whilst the Peviewer offers an extra level of interactivitigat Splotch does not, it still suffers from a
high level of accessibility for anybody not knowledgeable with Splotch or the environments that
Splotch takes advantage dthere is seemingly a lack of a tool which could be utilisedimna
scientific userad visualiz and interact with datasets.

3.5 QNDER

Cinder is a C++ library with official support for OS X, Windows, i0OS, and (@®imir, 2015a)t
offerssupport for OpenGL and DirectX. A main function of Cinder is to makegcaslsimple as
possible with its inclusion of functions that simpEfspects of codig such as primitive drawing (e.g.,
drawCube).

/I A\YRSNI NBTSNAR (2 AdGaSt¥F | & o SthegsartobtdeveldgmatINE A NI YY Ay
often called creative codih §Cinder, 2015a)According taRijniekg2013, pp.) creative coding is

Gl FASETR GKIG O2Y0AySa O2RAYy3 YR RSaArAdyéo
ProcessingProcessing Foundation, n.da)another popular creative codirigol which also supports
various operating systems and OpenBbawever,whereas Cinder is a libry that uses C++,

Processing includets own IDE with its own language (also named Processing) which builds from the
Java languag@Reas, 2007As both Cinder project&Cinder, 2015band Processing projects

(Processing Foundation, n.dtgn create very similaesults Cinder seemsie the preferred choice

if a user igamiliar with G C# or C++and Processiniipe preferred choicéf a user idamiliarwith the

Java languagé-or the purposes of this projedhe decision to use Cinder was a client choice, and
from a technical poinof view,as both Splotch and Cinder share a common language, Cinder is
better suited.

As both Cinder and Processing share the common function of creative codjplgmenting Splotch
within a Processing application would most likely be able to producéasiresults as are described

in this report. However, as Processing uses its own Java like language, the entirely of the Splotch
code would have to be rewritten to support this languagkerefore,Cinder, again, is the preferred
library.

Cinderhas been used in an abundance of public projedtse example ia multimedia walin the

Deutsche Bank, in Hong Kof#tkten, Bereza, Buni, McNamee, & Ddrfelthich creates patterns

and images that are generated in rehé. Another is an installation of an interactive LED floor used

G2 akK2g0lFlasS GKS O NJ YI y(dofisiod, 2aiN@Bnder aRadls® Beenlused O2 y OS L
for public outreach projects with the aim of educating a usech as this installation in New Zealand

which simulates an ocean feeding frer{feiodgin, Boil Up: Realtime Feeding Frenzy, 2CG48) an

installation in the Canadian Museum for Human Rigbizswell, n.fiwhich created an interactive

exhibition aiming to convey a sensitive subject matter in an informative @iger also has been

used to create particle systems such as in the Aether préigzeigeling & Castro, 2014)

9

The strength of Cinder comes frata strengthof providinginformation through itsaesthetically

interesting interfacesalong with its ease of useofin a developepoint of view. Combining this in a

way that take advantage of the SpbK a2 Fi ¢l NBQa | oAfAdGe (2 LINRBOSaa
an application which has a lower level of accessibility than using Splotch difscthe Windows

operating system has the majority market, and Mac OSlLamalx shardess than a quartefNet

Applications, 2016)producing this application on a Windows system would allow it to reach the
largest portion of users.

10

4 METHODOLOGY

This section will discuss the various methodological approaches avaitadhleling their advantages
and disadvantagesind discuss the chosen model with justification for choosing it

4.1 METHODOLOGIQMODELS

4.1.1 Waterfall Model
The waterfall model is a simple methodology
GKSNBE G(KS RS@St 2 LIYSy| Reguirements é\iz R2oy sl NRa

towards thefinal release in a sequential
fashion only progressing onto the mxé step
when the current step ifully complete. The Design
waterfall model is advantageous when the

development cycle is known and understood, \
as once one has moved onto the next step,
the previous steps are not revisit§@einstein Implementation \

& Jaques, 2010 his means that the design is
not flexible or able to be modified. It is a very
strict model and does not account for Verification
uncertainties within the software \
development pocess. The result of itigidity

means it is also not well suited for client
feedback during the feedback.

Maintenance

A potential supporting argumerior the Figure4.1.1-a Waterfall model flowchart.

waterfall method is that more time will have

to be spent in the planning stages of the project, which could potentially identify problem areas, or
help when planning the timeline of the project.

4.1.2 Prototype Model

] _ A prototype model takes the basic structure of
Requirements ﬁ “”2';‘5:;_3”“ a waterfall model, but allows the development
cycle to effectively go through that structure
multiple times over the course of development
Design (Bersoff & Davis, 1992 prototype is designed
\ and planned, and then produced. This
prototype is then tested and shown to the
mplementation client for feedback, which allows it to be built
upon, or a new prototype created. The
\ advantage ba prototyping model is the
flexibility it gives the developer to revise the
Verification \ design and implementation followirgptential

overlooked or unknown problems that may
come up during development. It also allows the
Maintenance client to be more involved in the process of
development, and hopefully produces a final

Figure4.1.2a Prototype model flowchart.

11

deliverable which is more in line with their requirements. This relationship with the client can reduce
the risk of wasted time as prototypes are developed over weeks or months, as opposed to the
waterfall modelwhich is a fixed timeline from design to deliverable.

There are various variations to the prototypedel, such as throwaway prdigping and
incremental prototypinghowever themost appropriate for our project is the evolutionary
prototyping model which is the process of developing an initial prototype which is theredefin
following feedback and tests as the project goes on. This results in a very flexible model

4.1.3 Incremental Build Model
The incremental build modécombines
elements otthe waterfall model applied in an Requirements \

interactive fashios (Pressman, 2005, p. 48)
The first increment of this model produces a

core product which fulfils the basic .
requirements of the software, and further S Design \

increments containthe supplementary
features. This increment is then reviewed and
tested, by the developer and client, which Implementation
allows a plan to be created for the next
increment which details further features and \
functionality.

Verification
Unlike the prototype model, which focuses on
implementing and testinginglefeatures for
each prototype the incremental build model
focuses on creating an operatioriait Maintenance
Wi dedR 2Jaly Q O S NFoH2tifitialyT (K S
and then building upon this in smaller Figure4.1.3-aIncremental build model flowchart.

increments It has similar advantages to the prototype model, but it allows for a product to have a
clearly planned and linear path of development to the initial incremeni|stallowing the flexibility
of further features to be reviewed and discussed.

4.2 JUSTIFICATION QROSEMMODEL

Due to the uncertain nature of the validity and potential unseen setbacks of the project, it was
decided to use the incrementhlild model. The main reason for choosing this model is that the
main bulk of the work involved in the project will be the initial incremend@feloping the Splotch
software to work within a Cinder environmebt ¢ KA a4 OFly 0SS O2yaftieSNBR (KS
project and an abundance of planning, understanding, and development will be needed for this
initial increment;which lends itself to the linear approach that the first increment allows. Following
this, the software will need to be assessed and reeig to evaluate performance and feasibility of

the software as a whole. After this assessmeant)sequenfeatures can be discussed and
implemented with the knowledge of how the programs core functionality is performing. An example
situation which lends #elf to this model could b#hat, following completion of the core

functionality, the performance of the software is subpar, this would allow the next increment to
focus on performancéllowing a review of the software his is a problem which could noeb
accurately predicated until the program hlagdthis initial incrementwhich, when using this model,
allows the development more flexibility t@act to potential problems.

12

5 USINGSPLOTCH WITHINONDER APPLICATION

This chapter will detathe process of creating a Cinder application thatsesi Splotch to create a
visualiation tool.

5.1 ENTROPY

WYOY(INRLR-AQOASYIOY ORPNI F 62NI GA2yé¢ (GKIG O2Yo0AySa
audiovisual performancéMarkovic, 2016)The show is being aimed to be shown at various science,
music, and art festivals around the UK and internationdlhe show will be visualimy astronomical

data from various real world experiments, as well as cotagional simulations supernova
explosionsThese visual&ions will be accompanied by educational talks and specially produced
musical tracksThe expected audience is expected to be several thousand people within the first
year of the live performancg®larkovic, 2016)

5.2 REQUIREMENTS

5.2.1 Gathering of Requirements

Requirements for this project were gathered from one to one meetings with the client from the
Entropy project. Meetings with the chiéwere initially relatively regular in order to ga general

idea of the projectalready existing materials, and outline of requirements and work. As there were
multiple chapters to the Entropy project, there were many options for how the work coulcepah
Following these meetings, it was decided that the work on these project should focus on how to
integrate loading large astronomical datasets within a Cinder applicalioese meetings allowed

the project requirements to be defined precisely.

5.2.2 Functimal Requirements
1. Visualiz astronomical datasets within a Cinder application
Existing work for the Entropy project has been built using the Cinder library. As such the
client required the Splotch integration to also be within Cinddre application mudgbe able
G2 dza S Urakies RiSNAREurady Kisualig datasets.

2. Ability to create imageghat are alike to Splotch produce images bwithin a non-HPC
environment
The Splotch software written with a HPC environment in mind, but the Entropgjpct is
aiming to k& an educational public projectherefore it is important the software has a
lower level of accessibility for a user. This meant that the software should be able to be ran
on a variety of systems, not just Unix environments, for aeng@n who wished to do so.

3. Read and edit Splotch parameter files
Having the ability for the program to edit the parameter file within the application
streamlines the experience for the user, as they will be able to edit and load as they require,
without having to exit the program or use an external editing tddlis also supports the
ability for the user to move onto using the full Splotch software, as they can use the same
parameter file they are editing here.

13

LJdzc

4. Real time interactivity
The user should be able to have some kind of control over the \datiafi once it has been
loaded. Thisvill at least include camera controls, but also the user should have some form
of control ove the aesthetics of the visuadition in real time. Camols willalso aim to be as
intuitive and effortless as possible.

5.2.3 NonHunctional Requirements

The softwarewill act asan extension of the existing Splotch software, using its source files as

necessary, in order to create a®se an imagaspossible wihin CinderThe accuracy of this image

will be determined by its similarity to the image that the Splotch software would produce of the

same datasetlt will aim to be as performance conscious as possible, in order to minimise the

computational werhead sas to allow for atargea dataseto be visualigd RS LISY Rl yi 2y | dz
hardware.

The applicatiorwill, as much as possible, be as accessible teso@mntific and noracademic users
S0 as to promote the public outreach aspect of the Entropy project.

The final application will be released as an ogenrce program.

5.3 INITIAIRESEARCH

Following and during the gathering of the requirements, it was important to fully understand the
Splotch software so as to understand how best to appraatdgrating it into a Cinder application.

As there is no precezht for astronomical visuakition software withinCinder, and very little
visualiation tools for the Windows platform at all (most use a Linux emulation), there was a large
period of researk at the start of the projectAt the time of the project, the documentation for the
newest version of Cinder (0.9.0) was not substantial and the majority of the learning was performed
by studying a subset of samples provided to observe how the librargedor

However, the largest portion of time within this period was spent studying the Splotch software. This
required the installation of a Linux distributipas well as the sourcing of datasets to test the

software with The documentatioffior Splotch was almost neaxistent which forced the studying of

the software to rely largely on testing, and studying of the codeul#stantial amounof helpvia
conversations witldevelopers who have worked on the Splotch softwaltewed a better
understandingof its use Example files were alswovided from these developerét the start of
development, developer experience with the Linux operating system was sparse, and seasme
alsospent on becoming familiar with these of thecommand line.

5.4 DeSIGN

Due to the nature of the application, a large amount of the inner workings of the application would
only be discovered via exploration and testing of the software. It therefore seemed unrealistic to be
able to create an itlepth design documenbf the code structure, and insteadgeneral overview of
how the softwareshould performedvasto be generated.

5.4.1 Proposed Solutions
Following the initial planning stages, a document was produced to propose possible sdlutibas
task presented (seappendice}. There were two solutions proposed.

14

5.4.1.1 Solution 1Remotely connect to a Splotch machine, via a Cinder application.

This solution would create a Cinder application which would act as an interface in which the user
couldload and edit a parameter file. The Cinder application would act as the front end, providing the
GUI (Graphical user interface) to the user. The application would then send the resulting parameters
to the Splotch software, which would have to ran on aikimachine, to render the image according

to the set parameters. Splotch would then send the data back to the Cinder application, which would
either, output the image, or use the resulting data to create a 3D vistialn.

This solution would allow a user to produce the exact same image as the Splotch software would,
except from a Windows or OSX system, whilst also being easy for these.to u

Cinder application Remote Connection Linux Machine

Send to Splotch
machine

Load Cinder

application Produce image

Y

Load parameter file Send to Cinder

application

Y

Y

Edit parameter file

A

View image 4

Figure5.4.1-a Application flow of remote connection solution.

The drawback to such a system would be that the ugmeed to have access to a HPC or generic
Linux environment. As the project has an emphasises on being as accessible as it can, and as most
data seems to place Linux market shasebeing below 2% of usgiRrotalinski, 2015)Net

Applications, 2016his does not support this ideal. Also due to the possibility of having extremely
large datasetss discuss in section 3the data would have to also be stored in the Linux system to
avoid the large amount of time it would take to transfer these to the Splotch software. This could
potentially still be useful for the scientific community, but it also seems to add an unreegesiep

when the user, which would need access to the Linux machine with both Splotch and the data stored
on it regardless, would choose use the Cinder application on a separate machine, instead of

running the software directly.

5.4.1.2 Solution 2Creating éSplotcHike Plugin for Cinder.

A second proposed solution was to use Splotch for the purpose of its readers and other functions to
process the data into a form that a Cinder application could then acressise to create a 3D
visualiation on the same m@achine. The application would function in a similayvi@ the already

existing PPeviewer for Splotch, but would be able to run oMé@ndows machine whilst also providing

a GUI for the useiThe image would be calculated via Splotch, and rendered viaitioeIC

15

application, which would also be providing the interactivity and offer the opportunity to provide
additional information for the purposes of the Entropy project.

The Splotch software would be compiled withinthe®mld ¥ YR 06 S NHzyhgchipea 2y (K
without the need for them to have access to a Linux environment. This would gilapplication

to produce an image that rephtes a Splotch imageithin Cinder As the application would be using

the same parameter files that the Splotch software uses, this would also offer the opportunity for a

user to take that same file and run it via the complete Splotch program within aedwisonment.

This solution would satisfy all functional requirements with the only drawback being that the images
produced would not be the same images that Splotch itself would produce, but rather as close as

Oty 06S I OKASOSR 2y (KS dzZaSNDa Yl OKAYySo

Cinder application

Load Cinder
application

|

Load parameter file ——

1

Edit parameter file

i

View image -

Process data via
Splotch

Figure5.4.1-b Application flow of solution.

5.4.2 Decide Solution
Following positive discussion with the client regardimg solutions, solution 2 was deemed to be
most suitable for the prposes of the Entropy project.

16

5.5 TIMELINE

A timeline for the project was designed at this point in timibjch can be seen below. Modifications
were made to the timeline during the project due to incorrect estimations. These modifications are
discussedht their relevant timen section 5.7 Further modifications were also made to the timeline

due to theTAOproject (discussed in section 6).

Task Name
Research

Initial meetings and outline of project

Understanding Cinder
Understanding Splotch

Deliverable Preparation

Presentation
Implementation

Planning Implementation

Coding
Testing
Write Up
Deliverable 2 deadline

Tablel The original timeline for the project.

5.6 IMPLEMENTATION

Duration
48 days
13 days
11 days
24 days
2 days
0 days
46 days
7 days
40 days
46 days
27 days
0 days

Start

Thu 08/10/15
Thu 08/10/15
Tue 27/10/15
Mon 09/11/15
Tue 01/12/15
Thu 03/12/15
Mon 14/12/15
Thu 03/12/15
Mon 14/12/15
Mon 14/12/15
Mon 15/02/16
Thu 24/03/16

Finish

Sun 13/12/15
Mon 26/10/15
Tue 10/11/15
Thu 10/12/15
Wed 02/12/15
Thu 03/12/15
Sun 14/02/16
Fri 11/12/15
Fri 05/02/16
Sun 14/02/16
Tue 22/03/16
Thu 24/03/16

The implementation of th@pplication took the form of creatingcremental prototypes, where the

initial prototypes werethe bulk of the workand each sequential prototype addléeatures onto the
application in smaller increment&ach prototype would then be tested thoroughly before moving

on. The focus was on getting the application to have its core mechanics working before moving onto
code optimisation. Additional features could then be added kter date.

Thissectionwill describe an overview of how the application is working, and then provide a look at

its prototype iterations.

5.6.1 Development Tools

As briefly discussed undar section 5.3the latest version of Cinder (0.9.8)d not have a
substantialamount of documentation available, with the majority of information availdi@egfor

the previous version (0.8.6] his meant that there would be a longer period of learning for the
newest version of Cinder, as a mah®roughstudying of the provided samples would be necessary.
However, as the 0.9.0 version of Cinder has a completely rewritten Open@Cidd?| 2015d) was
decided that the applicatiowill usethe most upto-date version availdb in order to be as

compatible as possible moving forward.

The IDE (integrated development environment) that was used was largely decided by its
compatibility with Cinder. Both Microsoft Visual Studio 2013 and Microsoft Visual Stucdsca?®1

FdzZ f @& &dzLJL)2 NI SR

/| A\YRSNI ndpdn =

K26SOSN) 2yf e

applicationr an application which can correctly set up a Visual Studio project with Cinder for the
user. It was therefore decided to use Microsoft Visuat® 2013 as an IDE, as theject can
always be easily ported to the 2015 at a later date if necessary using Visual Studios in built tools.

17

0 K

5.6.2 Integration with Splotch

The main resource for the application was the Splotch software. This meant that theadioplwill

attempt to use as much as the original source code as possible in order to reduce its physical size on
disk and also reduce the need for code to rewritten. It also serves the dual purpose of processing the
data in the exact way that the Splttsoftware would. The main reference for how this application
would integrate the Splotch stfare was the already existingd¥iewer application within the

Splotch source fileghe Reviewer code was used as a basis foirdarface between the Cinder an
Splotch code.

It was decided thathe Cinder applicationvould haveits own edited version of therBviewer source
files instead ofccessinghe original files as it does with the core Splotahctions The reasoning

for this was so the Splotch Prewier, and the Cinder application could function as two branches out
from the core Splotch without interacting with one anoth&rwould allow each program to be

edited and produced separately. As they are both intended for different platforms, this would
eliminate any potential conflicts as well as allowing each to play to the strengths of its respective
platform.

The main changes the Previewer filesvere:

1 Removal of redundant codehe rendering and user interactivity for the application will be
done via functions provided by Cindérlarge amount of théunctionality in the Splotch
Previewer was therefore unnecessayd removedThis also increasing code readability

1 Porting of code for use on Windowshis included using the appropriate equivalent
Windows libraries. It also included changes in the way the application reads the file path due
to the difference in file systems between the two operating systefg.,Windows using
backslashes in place of forward slashes.

9 Editing functions to work within the Cinder applicatiertertain functions ad to be edited
in a way that the Cinder application could use them in a logical and efficient way.

The coreSplotch code also had to be edited minimally in order to be compatible with the Windows
2LISNF GAYy3 acadSyo ¢ KSWISDOSVRQINGERGSIBBitioR® ¥s3o dzy RS NJ |
interfere as little as possible with the original cod&e main edits madeotthe core Splotch code

were made in order to allow it to compile on the Windows system and include changes to included
libraries, and an added function. The Cinder application does not have its own copies of the Splotch
code, and instead its functions atalled from within the edited Previewer files.

18

5.6.3 Cinder Interface

SplotchCinder A | Previewer A | @ parameterinfo | parameter A | paramfile A
Class Class [Class Class
-+ App @ Program
2 = Methods — = Fields =l Fields
= Fields ,
@ @ Load L parameters @ params
"a allParams @ LoadParameterFile = Methods) 9, read_params
@ cinder A '.-. paramFileReference @ yerbose
@ drawMainScene @ GetParamFileReference > a
= =
@ mCamUi [A @ Load (+ 1 overload) Methods
©, mlastMousePas Class @ Run © ~paramfile
@ mParams @ SetFilePath @ find<T> (+ 1 overload)
@, myParamFile = Fields @ Unload @, findhelper
@, paramArray blurColorModifer @ WriteParameterFile @, get_valstr
@, paramFileArg blurOn * Nested Types ® ngarams.
@, paramsettings blurStrength . @ getVerbosity
@
= Methods brightnessData . pS paramipreser:
brightnessMod ParticleData A = param_unreai
@ createParams ° 4] Class @ paramiile (+ 2 overloads)
@ draw renderer contrast
> mBlurShader @ setParam<T>
@ loadMainScene Sriont = Fields @, setParamString
@ mouseDown mbrightness & Verb
C: “. brightness D setVerbosity
o mousepreg b @, col * Nested Types
o] mColer a colour_is_vec
@ mouseMove @ \

@ prepareSettings mFbo a colourMaps

PE L0000 0C 0000 L00C

L)
@ setParamString mFboBluri o dumeySp\othPamdeDma
, numTypes
@ setup mFboBlur2 @ particles .; iy m);?RGEDaTa
@ toggleBlur mindicesVbo L - ._‘. g.
@ update mParticlesShader = particleList
@
@ writeToParameterFile mPas ’_ﬁ radial_mod
—_— particles % smoothing_length
particleSize = Methods
s saturation @ GetParameterBrightness
= Methods @ GetParameterSmoothingLength
® Draw @ GetParticleList
@ Load @ GetRadialMod
@, RenderToFBO @ Load

Figure5.6.2-a Application class diagram.

TheSplotchCinder classholds an instance of thereviewer class and an instance of the
CinderRender class as can be seen in the above class diagrhimis the top level class
responsible for managing the entire application. The main loop oafigication is handled by the
WINDER_AR®nacro which is provided by the Cinder library.

When the application is loaded, the user will be presented with a Windows explorer window which

will allow the user to find and select the parameter file that thagwto wse for the visualition.

¢KS SELX 2NBN) 6AYyR26 oAttt 2yt darlQf (SEA SYES 2d2apS NIKEK 2
failsafe for the system in the case a user tries to select something other than a parameter file.

The applicatonwil (KSy LI &da GKS LI GK (2 GKS OK2aSy LI NIY
WoadParameterFile Q Fdzy OlA2Yy GKAOK gAff dpicSesdilie8le ahdizy OG A2 Y
return a reference tdhe classwhich the parameteinformation is stored in. The creati of the GUI

is then performed using the fields within the parameter file. This process is performed dynamically

using a combination of Splotch and Cinder functions, adgnamic multidimensionarray. Writing

the function this way allows the applicatido be able to load any number of parameter file

variables and their fields. This is important in order for the application to keep up to date with any

updates to the core Splotch functionality which may require new fields within the parameter file.

Oncethe parameters from the parameter file have been loaded into the application and displayed in
a parameter menu, the user can freely edit thestuea and save back to the file. Whilst all of the
parameters are editable, navery parameteeffectsthe image produced in thiapplication.It was
howeverdecided that it was important to include the entirety of the fieldgardless of thir effect

on the final visualiation so as to allovthe application to act as a complete entry to exit point for a

19

] Parameters

Mumber of particles
Particle Bri

Particle Size Modifier
Saturation

Contrast

Blur

Blur Strength

Blur Color Modifier

Reload

Save
AnalyzeSimulation Only
EyeSeparation

a_eq_e

boost

Parameters

Load

Save

AnalyzeSimula..

EyeSeparation
=]

a_eq_
boost
brightness0
brightness1
camera_x
camera_y
camera_z
color_asinh0
color_asinhl
color_fach
color_facl

brightness0 color_is_wecto.. FALSE
brightness1 I ! color_is_wecto.. FALSE

Figure5.6.3b Examples of loaded parameter files. The leftmost part of the image shows the parameter menu after
loaded the visuatation- The upper most values above the separator are real tirnarpeters that affect the renderer.

user to load, edit, and visuadizlata via Splotch on Windows. It also allows a user to take a
parameter file edited within this application to use on the full Splotch software.

It was decided to use Cindduuilt in interface functions as it allows the application to quickly add
functionality which includeshie ability to bind a functionta buti 2y 2y GKS YSydzz &dzOK
button. It also serves to keep the applications size to a minimum by using functions already included

in its libraries.

void SpletchCinder::createParams(beol mainScene, bool paramLoad)
if (mainScene}
1
mParams->addParam("Particle Brightness", &renderer.brightnessMod).min(@.1f).max(18.8f).precision(2).step(@.027);
mParams->addParam("Particle Size Modifier", &renderer.particleSize).min(@.ef).max(1l.8f).precision(2).step(@.027);
mParams->addButton("Blur”, bind(&SplotchCinder::toggleBlur, this));
mParams->addParam("Blur Strength”, &renderer.blurStrength).min(@.a8f).max(1.8f).precision(2).step(@.01f);

mParams->addParam("Blur Color Modifier", &renderer.blurColorModifier).min(@.@f).max(2.8f).precisicn(2).step(@.017);

mParams->addSeparator();

1
b

Figure5.6.3c Code snippet of loading GUI parameters.

5.6.4 Cinder Renderer

The renderer within the application is a very cal part of the entire visualiion application, as it
produces low the application will visuakizthe data As the application has the ability to deal with
very large data sets with potentially millions of particles, it was also important to implement it in a
way to attempt to keep abigh a framerate as possibleith further thought to keeping the

framerate at a stable point

The render starts by loading the applications shader assets into memory, and setting the cameras
clipping plane. The clipping plane is set to an appropridtiglif number so it can includel particles
from the dataset which can potentially span distanaagside the range of the default valuasthin

the virtual space.

The list of particles is then assigned to a new variable by calling a function frdpatheleData
class which was passed into the rendeRarticlepositions and respective colours are loaded into
the shader via two SSB(Shader Storage Buffer Objeat)d drawn using an index buffeeSBOs
were chosen over UBOs (Uniform Buffer Objects) ag tiave the capacity to be as large as the
graphics card memory limigeGX, 2014yhich is helpful towards being able to render as many

20

particles as possibl&he position SSBO is required to beea4 for it to beable to bemultiplied
with the model matrix within the vertex shadérhe colour alpha is always setlo

ciiiwvecd *pos = reinterpret_cast<ci::ivecd®>(mPos->map(GL_WRITE_ONLY));
ci:ivecd *color = reinterpret_cast<ci::vecd®>(mColor->map(GlL_WRITE_ONLY));
for (size © i = 8; 1 < particles.size(); ++i) {
pos[i] = ci:ivecd(particles[i].x, particles[i].y, particles[i].z, 1.8f);
color[i] = ci:ivecd(particles[i].e.r, particles[i].e.g, particles[i].e.b, 1.8f);

1
J

mPos->unmap();
mColor->unmap();

Figure5.6.4a Code snippet of mapping particle position and colour into the SSBOs.

Particles are drawn after invoking tigdBlendFunc function in order to blengarticle colours
togetherwhere they overla@nd simulate transparency his results ian image which haamore
realistic simulation o€olours

A Gaussian blur is also creatmd the image by rendering the particles to a FBO (Frame Buffer
Object), then passing this FBO through a Gaussian blur stvéiderto createhorizontal and vertical
blur FBOswhich is then drawn over the first FBO via additive blending.

The index buffer is arranged in a regular way to create two triangles into a quad. Which is then
computed into acircular sprite in the shaders and allows the application to present particles as 2D
elements within the 3D spac&nown as billboardsThis idor the purposes of performance within

the application and the reason for using this method will be discussadurther section

5.6.5 Shader assets

The application currently computes the particle screen positions and oiaing shaders. Shaders

are computed on the GPU which means theygeaerallymuch faster in comparison to CPU
computations(Rayne, 2014)n some cass this can up to 25 times as fé6tristensen, 2011)Jsing

shaders with Cinder is relatively simple as it uses the GLSL shader language and even contains a class
for easily loading a shader progra@omputations were perfored on the vertex shader when

possible as a calculation on a fragment shader is much more expensive than a calculation on a vertex
shader due to the fragment shader being executed once per pixel and pixel quantity in a scene
generally outnumbers vertex quéity (Microsoft, 2016a)

void main()
{

int particleID = gl VertexID >» 2; // 4 vertices per particle

vecd particlePos = pos[particleID];
vecd colorV = coler[particlelID];

vec3 colorV3 = vec3({colorV.x, colorV.y, colorV.z); //Convert into a wvec3
colorV3 = ContrastSaturationBrightness(colorV3, brightnessMod, saturation, contrast); //Read into function
colorV = vecd(colerV3.x, celorV3.y, colorVi.z, colerV.w); //Convert back intoc wvec4

Out.color = colerV;

Jimap vertex ID to quad vertex
vec? quadPos = vec2{ ((gl VertexID - 1) & 2) »» 1, (gl VertexID & 2) >> 1);

vecd particlePosEye = ciModelView * particlePos;
vecd vertexPosEye = particlePosEye + vec4((quadPos * 2.8 - 1.8) * iparticleSize, 8, @);

Out.texCoord = quadPos;
| gl Position = ciProjectionMatrix * vertexPosEye;
Figure5.6.5a Code snippet of the vertex shader.
As previously discussgithe vertex shader for the application takes the position and colour SSBOs
and uses them to compute a circular billboard spritéakes four vertices per particle maps thase
a quad vertexUsing these various variables, along with the projection and model matrices, it
computes the position so that the sprite will always be facing the camera within the application.

21

When this information is then passed into the fragment shratiee sprite is still quad shaped. The
fragment shader computese circle sprite by finding a specified radius of a circle from the centre of
the quad. If any fragments are beyond that, they are discarded.

Within the vertex shader the final colour fordtparticle is computed using its existing colour and
any modifiers that are applied to it via the parameter menu. These can include brightness, contrast,
and saturation.

A Gaussian blur can also be toggledamd off for the final visuakion. This is doe via a fragment
shader using an offset specified by the uska user toggles the blur on, theduring the rendering
stage of the pipeline, the FBOatthe particles are drawn intare drawn into a second FBO via the
Gaussian blur shaders. This isfpemed twice once for the horizontal blur, anal second timdor

the vertical blur. The results from the second FBO are then drawn over the initial FBO via additive
blending. This creates the&l blur effect on the visuaktion.

A Gaussian blur is also used in the full Splotch software, and so this feature supports the
requirement for creatingmages that replicate Splotch produced imagélse result creates a much
nicer final image, with particles that appear to be brighter wheol@se proximity to one another.

#version 338

uniform sampler2Dd tex@;

uniform wec2 sampleoffset;
uniform float colorModifier;
in wvec2 vTexCoord;

layout (location = @) out vecd oFragColor;

vold main()

{
vecd sum = vec3(2.8, 8.8, 8.2);
sum += texture(tex®, vTexCoord + -18.8 * sampleOffset).rgbh * 8.889167927656811355;
sum += texture(tex®, vTexCoord + -9.8 * sampleOffset).rgbh * B.814B53461201840888;
sum += texture(tex@, vTexCoord + -B.8 * sampleODffset).rgb * B.828595286319257878;
sum += texture(tex®, vTexCoord + -7.8 * sampleOffset).rgb * B.828855245532226279;
sum += texture({ tex®, vTexCoord + -6.8 * sampleOffset).rgb * ©8.838658411513543879;
sum += texture(tex®, vTexCoord + -5.8 * sampledffset).rgbh * 8.849494378859311142;
sum += texture({ tex®, vTexCoord + -4.8 * sampledffset).rgb * B8.868594B53578763878;
sum += texture(tex®, vTexCoord + -3.8 * sampleOffset).rgb * 9.870921288847896992;
sum += texture(texd, vTexCoord + -2.8 * sampleOffset).rgb * 2.8793538591384945851;
sum += texture(tex®, vTexCoord + -1.8 * sampleOffset).rgh * 8.884895951965938982;
sum += texture(tex®, vTexCoord + 8.8 * sampleODffset).rgh * B.B86B261968621246082;
sum += texture(tex®, vTexCoord + +1.8 * sampleOffset).rgb * B8.8848959519659309082;
sum += texture tex®, vTexCoord + +2.8 * sampleOffset).rgb * B.879358891884948831;
sum += texture{ tex®, vTexCoord + +3.8 * sampledffset).rgb * 8.878921233847895992;
sum += texture(tex®, vTexCoord + +4.8 * sampledffset).rgb * 8.868594B53578763878;
sum += texture({ tex®, vTexCoord + +5.8 * sampledffset).rgbh * 8.849494373859311142;
sum += texture(tex®, vTexCoord + +6.8 * sampleOffset).rgb * 8.835658411513543879;
sum += texture(tex@, vTexCoord + +7.8 * sampleOffset).rgh * @.828855245532226279;
sum += texture(tex®, vTexCoord + +8.8 * sampleOffset).rgh * 8.828595236319257378;
sum += texture(tex®, vTexCoord + +9.8 * sampleOffset).rgbh * B.814B53461201840888;
sum += texture| tex®, vTexCoord + +18.8 * sampleOffset).rgb * B.8@9167927656811385;
oFragColor.rgb = sum * colorModifier;
ofFragColor.a = 1.8;

1

Figure5.6.5b The Gaussian blur fragment shader.

22

Parameters

MNumber of particles: 3708..
Partide Bright.. 1.00
Particle Size M.. 0.60
Saturation 1.00
Contrast 1.00

Blur E
Blur Strength 0.12

Blur Color Mod..

Reload

Save
AnalyzeSimula..
EyeSeparation
a_eq e

boost
brightness0
brightness1

Parameters

Number of particles
Particle Bright.. 1.00
Particle Size M.. 0.60
Saturation 1.00
Contrast 1.00
Blur

Blur Strength 0.12
Blur Color Mod.. 1.20

Reload

Save
AnalyzeSimula..
EyeSeparation
a_eq_e

boost
brightness0
brightness1

Figure5.6.5¢c The same image with the blur on. Notice how areas with a higher density of particles appear brighter

5.7 PROTOTYPES

5.7.1 First Prototype

Theinitial prototype for the application came in the form of using Cinder to read in aiteXilfed
with random X, y, z coordinatet would then render a sphere in each positidihis was useful in
order to identify the best way to render shapes witldmder. Whilst the method that was used in
this prototype was easy to implement and use, it ultimatelffered bad slowdowns frorasingjust
10,000 points. This was far away from the amount of points the application could potentially be
drawing, and so aew method would have to be conceived going forward.

This prototype was completed under the period of time of learning Cinder in preparation for the rest
of the project.

5.7.2 Second Prototype

The next few prototypes focused on the best wayrtiegrate the Splotch files into the application

and allow it to be compiled. The method for achieving this, was to identify which function in which
file was needed to catl from Cinder in order to retrieve the list of particlés this point in time,

the plan for the application was to use only the reader files from Splotch (and any relevant includes
needed), and take the relevant particle list after using thegi¢ghout the needto use the IPeviewer

files. However, it seemed countattuitive to disregrd how the Peviewer was working with the

Splotch readers when it was performing a similar function to how the Cinder applications integration
with Splotch was being plannetiherefore, it was decided fahe pipeline to go through the

Previewer files ashey offered a framework which was already integrated with the core Splotch files.

After this point, the Reviewer fileswere slowly added to the project one by one, meticulously
resolving errors as they came-the majority being fromhe differences in platform the software
wasran on. The rendering portion of the files were all commented out, as the focus wsimply
allowing the application to include and compile with the k&lat Splotch andrieviewer files Any

and all files weréncluded if they were uselly Splotchregardless of whether the Cinder application
would need them in the final application. This was to reduce time spent on porting files and classes
which would not end up being used in the final applicatiéventuallythe application was compiling,
however no functions from Splotch were yet to be callEde application in itself, was just creating a
window.

5.7.3 Third Prototype

The next prototype was focusing on allowing the application to specify a parameter file and being
able to pass this into SplotctWhen running the original Splotch, the path to the parameter file is
specified in the command line. As the application wowdtllme running from the command line, the
path to the file was hard coded for the purposes of testing. The main problem in thistypetwas
adapting the way the feviewer manipulated the parameter file path due to the difference in file
systems on a Windes and Linux system@ne example of this was modifying the way the application
finds the path its exe file. Which can be seen in the figures below. The variable containing the path
to the exe does not end up being utilised in the final application, bthieatime the prototype was
attempting to emulate the same functionality, but on the Windows platfofine final state of this
prototype had the application finding and utilising the parameter file, feeding the data into its
appropriate reader, and attempig to read that data. It was at this point that errors were occurring
due to out of range memory copies.

24

Parameter Previewer::parameterInfoj

vold Previewer::Load(std::string paramFilePath)
1
// Get path of executable
int ret;
pid_t pid;
stdiistring exepath;
char pathbuf[PROC_PTIDPATHINED MAXSIZE];
pid = getpid();
ret = proc_pidpath (pid, pathbuf, sizecf({pathbuf)});
if (ret <= @)

1
std::cout << "Could not get path of exe.\n";
std::cout << "PID: " << pid << std::endl;
exit(@);
}
else
1
// Remove executable name from path
int len = @;
exepath = std::string(pathbuf};
for{unsigned i = exepath.length()-1; i > @; i--)
if(exepath[i] == '/")
1
len = 1;
break;
}
exepath = exepath.substr(@,len+l);
h
#endif

DebugPrint("Previewer path: %s\n", exepath.c_str(});
Figure5.7.3b Code snippet of part of the original load function for finding the path of the exe of the application.

previewer: :ParticleData Previewer::Load()

{

char pathbuf[MaX_PATH];
GetModuleFileNameA(NULL, pathbuf, MAX_PATH);
// Remove executable name from path

int len = 8;

std::string exepath(pathbuf);

for (unsigned i = exepath.length{} - 1; 1 > &; 1i--)

1
if {exepath.at(i) == "‘\')
1
exepath.erase(exepath.begin() + 1 + 1, exepath.end(});
break;
h
¥

Figure5.7.3a Code snippet of the modified function to work on Windows.

Time taken unsuccessfully attempting to fix these errors meant that the approachauiimie for
the end of the coding period in the original plan had to be adjusted, as it would no lbager
accurate estimation.

5.7.4 Fourth Prototype

Following the successful implementation of the application finding and attempting to read the data

the nextprototype focuses on solving the memory erraas,well as how we could visuaithe

particles within Cinder. Since the previoprototypes had been using a 9GB sized dataset, the
application was tested on a smaller sized dataset to identify ifithis the issueFollowing tests on a

46MB sized dataset the application was able to successfully compile and load the data. This data was

25

produced by Splotch was haphazardly
fed back up through the pipeline of the
applicaton. The original renderdrom
the first prototype was then edited to
work with this particle data. The
application was able to render spheres
in the positions that were read from the
data.

Due to the heavy performandeom
trying to render around 370,000
spheres in this dataset, the application
had tobe set to only render a
hundredth of the particlesAs the strain Figure5.7.4-a Screenshot of the dataset being displayed as sphere

from even rendering a hundredth of the particles was so high, the camera controls were not working
correctly. This lead to the particles positions being scaled down so they could be seen by the camera
more easily.

This prototype was the proof of concept that Cinder was able to correctly communicate with Splotch
in order to render datasets.

5.7.5 Fifth Prototype

It was obvious that the renderer was not going to be able to render the particles in thieéicto
positions as spheres, as this would strain the system massively. Therefore, this prototype was
focused on creating a renderamhich would be able to visuaéizhe data in a meaningful and
accurate way.

Initially it was planned to use the renderers that were included inRftexiewer, scas to produce

the same visualaion, but via Cinder. A large amount of tiwas spent attempting to get these
renderers to implement correctly with Cinder, however there were many compatibility problems
which prevented this. These include OpenGL version discrepancies as well as platform differences. It
was decided therefore to dimiss this plan, and write a dedicated renderer using Cinder functions.
Ultimately, this seemed like the option that better suited the functionality requirements listed. As

the application was using Cinder regardless, it should therefore attempt to irséstfullest extent

in order to exploit all advances that it offers.

Figure5.7.5a Screenshot of the data being rendered via the initial Cinder renderer.

26

