
614173

Introduction of Orrery
Word Count: 919

Creating an orrery, or a simulation of a solar system, presents many challenges both mathematically
and logically. A vast amount of computations are needed to be able to update the system
realistically.

Mathematical Concepts Used
Gravitational Orbits

Problem- Realistically simulating the gravitational orbit of planets
In universal law, gravity is the principle that two particles attract each other with forces directly
proportional to the product of their masses divided by the square of the distance between them
(Newton, 2010). To correctly simulate gravity, we would have to know all the forces between all the
objects at all points.

Explanation
Newton’s law of universal gravitation states that every point mass attracts every single other point
mass by a force pointing along the line intersecting both points. The force is proportional to the
product of the two masses and inversely proportional to the square of the distance between them.
Put into an equation this is:

F = G r2
m m1 2

Where, ​F​ is the force between the two masses (), is the gravitational constant (defined and mm1 2 G

as ​6.673×10​−11​ N·(m/kg)​2​) and ​r ​ is the distance between the two masses.

Solution
Using Pythagorean Theorem () (Weisstein, Pythagorean Theorem, n.d.)We can easilya2 + b2 = c2

calculate the distance between the sun (at the origin) and the planet by finding the square root of
the sum of ​x ​and the​ z ​coordinates squared (as we are rotating around the ​y ​axis). We then put
our values into the gravity equation to find the force (or the acceleration value) between the sun and
the planet. As we have given the planet an initial position, we then calculate the angle between this
vector and the ​x ​axis using ​atan​2 ​(Pitt-Francis & Whiteley, 2012). Knowing we can now updatehetat

the planets velocity using more trigonometry (
). We then update ourin (theta) and cos (theta) for the x and z velocities respectivelys * F * F

planets position from the velocity.

Source Code

The entire calculation is needed to be performed every frame and is done from one function which is
called for each planet. Simulating gravity in this way meant we could achieve an elliptical orbit by

614173

setting the initial planet position and velocity tangent to the orbit that we wanted to achieve and
allow the function to process it from then on.

Matrix Rotation
Problem- Rotation within a 3D environment
A rotation matrix is a matrix that is used to perform a rotation in Euclidean space (Arvo, 1992).
Typically we can use Euler Angles for an object's rotation- However this can lead to problems such as
Gimbal Lock (Simeone). You also have to be careful at the order of your matrix multiplication as
matrix multiplication is not commutative (Operations with Matrices, n.d.).

Explanation
Euler angles are a way to represent the 3D orientation of an object using a combination of three
rotations around different axes (Weisstein, Euler Angles, n.d.). Rotation matrices are a means
representing a rotation about the origin.

Solution
OpenGL’s matrices can be either column-major or row-major and are on a right-handed coordinate
space (Martz, n.d.). To correctly rotate our planets on their tilt and translate to their correct position
we use a combination of a translation matrix, scaling matrix, and two rotation matrices. First we
scale our object down by a desired amount. Then we create a rotation matrix which allows the
object to be rotated by around an arbitrary axis defined by a vector. This matrix was writtenhetat

when I had originally planned to have the planets orbit around one another rather than just the sun.
It was left in the program in case this might be desired in the future, and also as an example of how
rotation matrices work. We then use Euler angles with ​glRotatef​ on the ​x​ axis to rotate the planet
onto its tilt and multiple with our current matrix. Then our multiplied matrix is translated to its
desired position as defined by our gravity function.

Source Code

614173

These have to be post multiplied in OpenGL (Wang).

Discussions and Conclusion
When creating the gravity function I choose only to have the planets be affected by gravity from the
sun and not from one another. This was in part to save on frame time, but also to avoid the
complications of the ​n-body problem​ (Aarseth, 2003) which is still a developing and problematic area
of physics. If we were to simulate gravity between two objects were one was not at the origin, then
we would need to use trigonometry and the dot product of the two vectors given by the objects.

Each planet's mass is its real world mass, but the sizes and initial distance from the sun were given in
relation to the earth (which was given a value of 1.0). Originally the positions and sizes were all
entered as their real world values and scaled down to a more manageable level. However finding the
initial velocities to allow a planet to enter an orbit become difficult. I could have calculated the
vector of a tangent to the desired orbit, but the easier solution was to give the positions of the
planets as ratios of earth’s initial position and slowly increase the positive x velocity until a desired
orbit was achieved.

Another way to achieve a rotation in 3D space would be to use quaternions which allow you to
rotate an object with a scalar and a vector. However I chose to stick with Euler Angles and matrices
as OpenGL does not support quaternions directly and would require extra functions to convert
(Bobic, 1998).

614173

References
Aarseth, S. J. (2003). ​Gravitational N-body Simulations, Tools and Algorithms.​ Cambridge: Cambridge

University Press.

Arvo, J. (1992). Fast random rotation matrices. In D. Kirk, ​Graphics Gems III​ (pp. 117-120). San Diego:
Academic Press Professional.

Bobic, N. (1998, July 5). ​Rotating Objects Using Quaternions​. Retrieved from Gamasutra:
http://www.gamasutra.com/view/feature/131686/rotating_objects_using_quaternions.php

Houghton Mifflin Harcourt. (n.d.). ​Operations with Matrices​. Retrieved from Cliffs Notes:
http://www.cliffsnotes.com/math/algebra/linear-algebra/matrix-algebra/operations-with-m
atrices

Martz, P. (n.d.). ​9. Transformations​. Retrieved from OpenGL:
https://www.opengl.org/archives/resources/faq/technical/transformations.htm

Newton, I. (2010). ​Philosophiae Naturalis Principia Mathematica.​ Seaside: Watchmaker Publishing.

Pitt-Francis, J., & Whiteley, J. (2012). ​Guide to Scientific Computing in C++.​ Berlin: Springer Science &
Business Media.

Simeone, A. L. (n.d.). ​3D Transformations.​ Retrieved from Portsmouth University Moodle:
http://moodle.port.ac.uk/pluginfile.php/618283/mod_resource/content/0/Lecture%2010%2
0-%20Transformations.pdf

Wang, H. (n.d.). ​Transformation_II.​ Retrieved from Ohio State University:
http://web.cse.ohio-state.edu/~whmin/courses/cse5542-2013-spring/6-Transformation_II.p
df

Weisstein, E. W. (n.d.). ​Euler Angles​. Retrieved from MathWorld:
http://mathworld.wolfram.com/EulerAngles.html

Weisstein, E. W. (n.d.). ​Pythagorean Theorem​. Retrieved from MathWorld--A Wolfram Web
Resource: http://mathworld.wolfram.com/PythagoreanTheorem.html

