
1 
 

 

University of Portsmouth 
School of Creative Technologies 

 
Final Year Project undertaken in partial fulfilment of the requirements for the BSc (Honours) 

in Computer Games Technology. 

 

How can the high performance visualization tool Splotch be adapted to produce 

cosmological images in two distinct computing environments? 

By 

Elliott George Ayling 

614173 

 

Supervisor: Mel Krokos 

Project Unit: CT6CTPRO 

March 2016 

 

Project Type: Artefact 

 

 

 

Abstract 

Two client based projects are presented in this report. Both use the ray-tracer software tool 

Splotch, which supports effective visualization of cosmological simulation data. The aim was 

to create applications which focus on providing optimised and accessible functions for use in 

cosmological and astronomical visualization. The first is an application made with the 

artistically focused C++ library Cinder, and is designed to offer an easy to use tool to interact 

with 3D visualizations of cosmological datasets on an accessible platform, and is the first of 

its type within Cinder. The second shows the adaptation and implementation of the Splotch 

software on the gSTAR supercomputer for the purposes of the Theoretical Astronomical 

Observatory. The result of which has a focus on optimisation whilst also adding functionality 

to automate parts of the Splotch software, with the aim of lowering the level of accessibility 

to produce the visualization images. The culmination is a report which can act as a guide for 

any projects which aim to pursue similar goals.  

  



2 
 

1 CONTENTS 

2 Introduction .................................................................................................................................... 5 

2.1 Project Overview ..................................................................................................................... 5 

3 Literature Review ............................................................................................................................ 6 

3.1 Introduction ............................................................................................................................ 6 

3.2 Simulations .............................................................................................................................. 6 

3.3 Visualization Tools .................................................................................................................. 7 

3.4 Splotch .................................................................................................................................... 7 

3.4.1 Splotch Previewer ........................................................................................................... 9 

3.5 Cinder ...................................................................................................................................... 9 

4 Methodology ................................................................................................................................. 11 

4.1 Methodological Models ........................................................................................................ 11 

4.1.1 Waterfall Model ............................................................................................................ 11 

4.1.2 Prototype Model ........................................................................................................... 11 

4.1.3 Incremental Build Model .............................................................................................. 12 

4.2 Justification of Chosen Model ............................................................................................... 12 

5 Using Splotch within a Cinder application .................................................................................... 13 

5.1 Entropy .................................................................................................................................. 13 

5.2 Requirements ........................................................................................................................ 13 

5.2.1 Gathering of Requirements........................................................................................... 13 

5.2.2 Functional Requirements .............................................................................................. 13 

5.2.3 Non-functional Requirements ...................................................................................... 14 

5.3 Initial Research ...................................................................................................................... 14 

5.4 Design .................................................................................................................................... 14 

5.4.1 Proposed Solutions ....................................................................................................... 14 

5.4.2 Decided Solution ........................................................................................................... 16 

5.5 Timeline ................................................................................................................................. 17 

5.6 Implementation .................................................................................................................... 17 

5.6.1 Development Tools ....................................................................................................... 17 

5.6.2 Integration with Splotch ............................................................................................... 18 

5.6.3 Cinder Interface ............................................................................................................ 19 

5.6.4 Cinder Renderer ............................................................................................................ 20 

5.6.5 Shader assets ................................................................................................................ 21 

5.7 Prototypes ............................................................................................................................. 24 

5.7.1 First Prototype .............................................................................................................. 24 



3 
 

5.7.2 Second Prototype .......................................................................................................... 24 

5.7.3 Third Prototype ............................................................................................................. 24 

5.7.4 Fourth Prototype ........................................................................................................... 25 

5.7.5 Fifth Prototype .............................................................................................................. 26 

5.7.6 Sixth Prototype.............................................................................................................. 27 

5.7.7 Eight Prototype ............................................................................................................. 28 

5.7.8 Ninth Prototype ............................................................................................................ 29 

5.8 Testing ................................................................................................................................... 30 

5.8.1 White and Black-Box Testing ........................................................................................ 30 

5.8.2 Module (Unit) Testing ................................................................................................... 31 

5.8.3 Testing Implementation ................................................................................................ 31 

5.9 Evaluation and Future Work ................................................................................................. 32 

5.9.1 Summery ....................................................................................................................... 32 

5.9.2 Performance and Optimisation ..................................................................................... 32 

5.9.3 Methodology ................................................................................................................. 33 

5.9.4 Further Features ........................................................................................................... 33 

5.9.5 Recommendations ........................................................................................................ 34 

6 Integrating Splotch for use on the Swinburne gSTAR Supercomputer ......................................... 35 

6.1 Introduction .......................................................................................................................... 35 

6.2 Initial Planning....................................................................................................................... 36 

6.3 Adaptation of the HDF5 Reader ............................................................................................ 37 

6.4 Further Work ......................................................................................................................... 38 

6.5 Optimisation and Testing ...................................................................................................... 40 

6.5.1 Benchmarks ................................................................................................................... 40 

6.5.2 Further Optimisation..................................................................................................... 42 

6.6 Evaluation and Future Work ................................................................................................. 43 

6.6.1 Summery ....................................................................................................................... 43 

6.6.2 Performance.................................................................................................................. 43 

6.6.3 Workflow ....................................................................................................................... 43 

6.6.4 Future Work .................................................................................................................. 43 

7 Conclusions and Evaluation .......................................................................................................... 44 

7.1 Summery ............................................................................................................................... 44 

8 Table of Figures ............................................................................................................................. 45 

9 Bibliography .................................................................................................................................. 46 

10 Appendix 1 - Client proposal document ................................................................................... 52 

11 Appendix 2- Splotch Manual First Draft .................................................................................... 53 



4 
 

12 Appendix 3- Test Cases ............................................................................................................. 57 

12.1 First Prototype ...................................................................................................................... 57 

12.2 Second Prototype .................................................................................................................. 58 

12.3 Third Prototype ..................................................................................................................... 59 

12.4 Fourth Prototype................................................................................................................... 60 

12.5 Fifth Prototype ...................................................................................................................... 61 

12.6 Sixth Prototype ..................................................................................................................... 62 

12.7 Seventh Prototype ................................................................................................................ 63 

12.8 Eight Prototype ..................................................................................................................... 64 

12.9 Ninth Prototype .................................................................................................................... 66 

12.10 Not Tested ......................................................................................................................... 68 

 



5 
 

2 INTRODUCTION 

46 years ago, on July 21 1969, the world watched as Neil Armstrong descended from the Apollo 

spacecraft and became the first human to step foot on a world that was not our own. The image of 

Neil Armstrong walking the lunar surface, and the words he spoke when he did have become 

immortalised in time, and have served to inspire countless generations of children, including a future 

commander of the International Space Station (Wall, 2012). The achievement of the first lunar walk 

was a huge accomplishment at the time, but has served to accomplish even more through the 

actions of those it inspired. But, with the final Apollo mission having concluded 44 years ago, the 

majority of the exciting scientific discoveries and accomplishments since have been performed with 

pen and paper, and more recently, computers. So how can science, and the people behind it, 

attempt to emulate the excitement and fever 46 years ago of seeing a man, and his spectacular 

small step. 

Science outreach programs aim to “simulate interest and to encourage better understanding of the 

application of science…” (Edwards, 2016). They have a long history, a famous example of which is 

Michael Faraday’s Christmas Lecture series started in 1825 (Sample, 2015), which had the aim of 

introducing “a young audience to a subject through spectacular demonstrations…” (Royal Institution, 

n.d). In a time where technology plays such a key role in both personal, and scientific areas, science 

outreach programs must, too, evolve and adapt to the ever changing landscape.  

2.1 PROJECT OVERVIEW 
This report will speak about two separate client based projects. The first is a project for The 

University of Portsmouth’s Institute of Cosmology and Gravitation’s Katarina Markovič. This project 

is for the purposes of the art-science collaboration performance, Entropy. Entropy is a public talk 

about the history of the universe, accompanied by a live audio-visual performance. The primary 

objective of the project is to create an application which can support cosmological visualizations in a 

format that is easy and accessible for the public, in the same vein as the goals of Entropy. This takes 

the form of an application using the C++ library Cinder, which is “for programming with aesthetic 

intent” (Cinder, 2015a). The application created for this artistic environment will be described in 

detail in section 5. 

The second project is also a client based project, but for Claudio Gheller, the Scientific Community 

Engagement Group Lead at the Swiss National Supercomputing Centre, and is one of the developers 

for the focused software in this report, Splotch. Through Claudio the project will involve adapting 

Splotch for the purposes of the Theoretical Astrophysical Observatory(TAO) on the gSTAR 

supercomputing system operated by the Centre for Astrophysics and Supercomputing, based out of 

the Swinburne University of Technology in Melbourne, Australia. The work performed for this 

project will be discussed in section 6. 

Both projects present a unique opportunity to develop applications that focus on easily visualizing 

cosmological datasets but in two very different environments. The first is for the artistic and 

atheistically focused Cinder community- who are not necessarily knowledgeable of the technical 

skills needed to work within a high performance computing environment, and the second is for the 

astronomical scientific community which TAO serves through a focus on optimised and effective 

supercomputing systems.



6 
 

3 LITERATURE REVIEW

3.1 INTRODUCTION 
One of the more prevalent questions that modern science aims to understand is how the formation 

of structures within the universe were created some 13.82 billion years ago following the Big Bang 

(Europeon Space Agency, 2013) in order to gain an understanding of the universe as whole. A huge 

variety of factors came into play at the creation of the universe which led to the increasingly 

complex structures that we have today. The results of this has led to adoption of techniques and 

tools which are designed in a way that attempts to fully describe and explain such a fundamentally 

complicated system of stars, gases, and galaxies. The data which these techniques produce can 

range from megabytes in size (Goldbaum, 2011), to petabytes and more (Lerner, 2015), and so a 

need is created in order to explore this data in a visual and intuitive way. 

Visualization is a way to look at these huge data sets in a way that allows us to understand the data 

in a communicative way. Kosara (2007) defines data visualization as being: 

1. Based on (non-visual) data- the data must come from outside the program and the program 

must be able to work on different datasets. 

2. Able to produce an image- The goal of the visualization must be producing one or more 

images as its means of primary communication of the data. The visualization must be able to 

stand on its own. 

3. Able to produce a readable and recognisable result- The result must be understood by the 

viewer, even if this requires training or practice. The use of additional elements is possible, 

but must not take precedence over communication goals of the visualization. 

Therefore, a visualization should create images that are both intriguing and informative whilst also 

serving the scientific purpose of allowing us to represent numerical values in a meaningful system.

3.2 SIMULATIONS 
In order to visualize this data, they must first be produced, and in order to realistically do so, there 

exists a number of methods which produce numerical simulations used to simulate these various 

structures of the universe (Dolag, Borgani, Schindler, Diaferio, & Bykov, 2008).  

One such example of these simulations is the Millennium Simulation (Springel, et al., 2005), which 

uses a modified version of the GADGET2 code (Springel, Yoshida, & White, 2001) to simulate 2,1603 

particles. The Millennium Simulation used 512 processes of a parallel computer at the Computing 

Centre of the Max-Planch Society, almost 1TB of memory, and required around 350,000 core hours, 

or 28 days of wall time (Springel, et al., 2005). This was considered the best large cosmological 

simulation for a number of years, along with the Millennium-II simulation (Boylan-Kolchin, Springel, 

White, Jenkins, & Lemson, 2009) but has now been to shown to have used obsolete parameters 

which are considered to be inaccurate (Stephens, 2011). The higher resolution and more accurate 

Bolshoi Simulation was introduced in 2011 (Klypin, Trujillo-Gomez, & Primack), which boasted 

“nearly an order of magnitude better mass and force resolution than the Millennium Run”.   

Further simulations include those introduced by the Illustric Project (Vogelsberger, et al., 2014) 

which produced 230TB of cumulative data volumes. The largest of these simulations took 19 million 

core hours to produce (The Illustris Collaboration, 2015).  



7 
 

More recent visualizations include one of the largest named the Q Continuum simulation (Heitmann, 

et al., 2015), which is a simulation carried out on a GPU-accelerated supercomputer, and involves 

more than half a trillion particles. The raw output of the Q Continuum simulation is approximately 

2PB (petabytes), a factor of 100 increase compared to the Millennium simulation (Heitmann, et al., 

2015, p. 5) and it used almost 90% of the 18,688 computer nodes of the Titan supercomputer that 

was used for the simulation. 

Further simulations include The ν2GC simulations (Ishiyama, et al., 2015)- the largest of which 

contains 550 billion dark matter particles taking 11 million CPU hours and using 50TB of memory 

(Ishiyama, et al., 2015, p. 3), and the Bolshoi-Planch and MultiDark-Planck simulations (Klypin, Yepes, 

Gottlober, Prada, & Hess, 2016). 

One of the attributes that all of these simulations have in common is that they exhibit very large 

datasets and have all required extreme computational efforts for them to come to fruition.

3.3 VISUALIZATION TOOLS 
In order to correctly visualize data there exists a number of current tools available. These tools must 

be able to process massive volumes of data with accurately within a reasonable time. Due to the size 

of such data, visualization tools need to be able to be run on computers with intense graphical and 

computing power. 

A number of open source software tools have attempted to take these large simulations and create 

visualizations. One of these tools is ParaView (Song, Zheng, & Shen, 2006). ParaView is an 

application built upon VTK (Schroeder, Martin, & Lorensen, 1996) which supports multiple platforms 

for its visualizations, which can be performed interactively in 3D. It has support for parallel 

processing (Kitware, n.d) and has been used to visualize cosmological simulations (Woodring, et al., 

2011). ParaView can be ran from a desktop computer, as well as within a HPC (high performance 

computing) environment, however it is aimed towards the scientific community and has a level of 

access which accommodates this. 

The same can be said for similar tools, VisIt (Lawrence Livermore National Laboratory, n.d) and 

VisIVO (Becciani, et al., 2010), both of which are also based on VTK. VisIVO contains a web interface 

which allows users to “upload and manage their datasets” (Becciani, et al., 2010, p. 18) however, 

this is specified as for use to “the scientific community”. It has also been released as a science 

gateway which allows standard users the ability to upload and manage their datasets whilst hiding 

the underlying technical aspects (Sciacca, et al., 2013).

3.4 SPLOTCH 
The two project described in this report concentrate on Splotch, which is a “public ray-tracing 

software…specifically designed to render in a fast and effective way the different families of point-

like data” (Dolag, Reinecke, Gheller, & Imboden, 2008). It is a high performance algorithm used for 

visualizing large particle-based simulations written entirely in C++. Splotch takes time outputs from a 

dataset which can be in the tens of terabytes(TB) to produce accurate images of the particles 

showing their position and velocities, as well as visualizing density, smoothing length, and other 

parameters. Splotch is optimized to run on standard HPC architectures using MPI based approach 

(Jin, et al., 2010) with OpenMP. It has also been modified to work with a CUDA programming 

paradigm (Rivi, Dykes, Krokos, & Dolag, 2014) to exploit modern HPC populated with GPUs. 



8 
 

The main interface to use Splotch is via its parameter files. These are text files which define 

parameters for the software, like the dataset location on the system, brightness values, particle 

type, and camera position. The Splotch software is self-contained with no dependencies other than 

those needed for parallelism, CUDA, and for specific file formats such as HDF5. This makes it highly 

portable. 

Splotch uses a volume ray casting approach which calculates individual contributions of particles to 

the final rendered image by using the radiative transfer equation (Shu, 1991). It supports this with a 

parallel implementation which distributes parts of the particles to separate processors, each 

producing a partial rendering, which is then composed into the final image. The CUDA 

implementation of rendering shows large gains in performance over the sequential processing 

version (Rivi, Dykes, Krokos, & Dolag, 2014, p. 17).

Figure 3.4-b Execution model of the Splotch code. From (Dykes, 2014). 

Figure 3.4-a Sample renderings in Splotch of small (left), medium (middle) and large (right) data sets. From (Jin, et al., 
2010). 



9 
 

3.4.1 Splotch Previewer 

The Previewer is an additional module for Splotch which can be used by compiling the Splotch 

software with the previewer option in its makefile, and then using the ‘-pv’ command when running 

Splotch. 

The Previewer offers an interactive 3D visualization of a dataset within an OpenGL renderer. A user 

can control the camera using the keyboard and mouse as well as edit parameters via an on screen 

command line. The Previewer can be used anywhere Splotch can on provision that the relevant 

libraries are installed. It also can be used to create animations and write to the parameter file. 

Whilst the Previewer offers an extra level of interactivity that Splotch does not, it still suffers from a 

high level of accessibility for anybody not knowledgeable with Splotch or the environments that 

Splotch takes advantage of. There is seemingly a lack of a tool which could be utilised by a non-

scientific user to visualize and interact with datasets.

3.5 CINDER 
Cinder is a C++ library with official support for OS X, Windows, iOS, and WinRT (Cinder, 2015a). It 

offers support for OpenGL and DirectX. A main function of Cinder is to make coding as simple as 

possible with its inclusion of functions that simplify aspects of coding such as primitive drawing (e.g., 

drawCube). 

Cinder refers to itself as being “for programming with aesthetic intent- the sort of development 

often called creative coding” (Cinder, 2015a). According to Rijnieks (2013, pp. 7-8) creative coding is 

“a field that combines coding and design”.  

Processing (Processing Foundation, n.da) is another popular creative coding tool which also supports 

various operating systems and OpenGL. However, whereas Cinder is a library that uses C++, 

Processing includes its own IDE with its own language (also named Processing) which builds from the 

Java language (Reas, 2007). As both Cinder projects (Cinder, 2015b) and Processing projects 

(Processing Foundation, n.db) can create very similar results, Cinder seems like the preferred choice 

if a user is familiar with C, C# or C++, and Processing the preferred choice if a user is familiar with the 

Java language. For the purposes of this project, the decision to use Cinder was a client choice, and 

from a technical point of view, as both Splotch and Cinder share a common language, Cinder is 

better suited. 

As both Cinder and Processing share the common function of creative coding, implementing Splotch 

within a Processing application would most likely be able to produce similar results as are described 

in this report. However, as Processing uses its own Java like language, the entirely of the Splotch 

code would have to be rewritten to support this language. Therefore, Cinder, again, is the preferred 

library. 

Cinder has been used in an abundance of public projects. One example is a multimedia wall in the 

Deutsche Bank, in Hong Kong (Akten, Bereza, Buni, McNamee, & Dörfelt), which creates patterns 

and images that are generated in real time. Another is an installation of an interactive LED floor used 

to showcase the car manufacture Audi’s A2 concept car (kollision, 2011). Cinder has also been used 

for public outreach projects with the aim of educating a user, such as this installation in New Zealand 

which simulates an ocean feeding frenzy (Hodgin, Boil Up: Realtime Feeding Frenzy, 2013), and an 

installation in the Canadian Museum for Human Rights (Upswell, n.d) which created an interactive 

exhibition aiming to convey a sensitive subject matter in an informative way. Cinder also has been 

used to create particle systems such as in the Aether project (Lengeling & Castro, 2014).  



10 
 

The strength of Cinder comes from its strength of providing information through its aesthetically 

interesting interfaces, along with its ease of use from a developer point of view. Combining this in a 

way that take advantage of the Splotch software’s ability to process point like data would produce 

an application which has a lower level of accessibility than using Splotch directly. As the Windows 

operating system has the majority market, and Mac OS and Linux share less than a quarter (Net 

Applications, 2016), producing this application on a Windows system would allow it to reach the 

largest portion of users.



11 
 

4 METHODOLOGY 

This section will discuss the various methodological approaches available, including their advantages 

and disadvantages, and discuss the chosen model with justification for choosing it.

4.1 METHODOLOGICAL MODELS

4.1.1 Waterfall Model 

The waterfall model is a simple methodology 

where the development ‘flows’ downwards 

towards the final release in a sequential 

fashion- only progressing onto the next step 

when the current step is fully complete. The 

waterfall model is advantageous when the 

development cycle is known and understood, 

as once one has moved onto the next step, 

the previous steps are not revisited (Weinstein 

& Jaques, 2010). This means that the design is 

not flexible or able to be modified. It is a very 

strict model and does not account for 

uncertainties within the software 

development process. The result of its rigidity 

means it is also not well suited for client 

feedback during the feedback. 

A potential supporting argument for the 

waterfall method is that more time will have 

to be spent in the planning stages of the project, which could potentially identify problem areas, or 

help when planning the timeline of the project.

4.1.2 Prototype Model 

A prototype model takes the basic structure of 

a waterfall model, but allows the development 

cycle to effectively go through that structure 

multiple times over the course of development 

(Bersoff & Davis, 1992). A prototype is designed 

and planned, and then produced. This 

prototype is then tested and shown to the 

client for feedback, which allows it to be built 

upon, or a new prototype created. The 

advantage of a prototyping model is the 

flexibility it gives the developer to revise the 

design and implementation following potential 

overlooked or unknown problems that may 

come up during development. It also allows the 

client to be more involved in the process of 

development, and hopefully produces a final 

Figure 4.1.1-a Waterfall model flowchart. 

Figure 4.1.2-a Prototype model flowchart. 



12 
 

deliverable which is more in line with their requirements. This relationship with the client can reduce 

the risk of wasted time as prototypes are developed over weeks or months, as opposed to the 

waterfall model which is a fixed timeline from design to deliverable. 

There are various variations to the prototype model, such as throwaway prototyping and 

incremental prototyping, however the most appropriate for our project is the evolutionary 

prototyping model which is the process of developing an initial prototype which is then refined 

following feedback and tests as the project goes on. This results in a very flexible model.

4.1.3 Incremental Build Model 

The incremental build model “combines 

elements of the waterfall model applied in an 

interactive fashion” (Pressman, 2005, p. 48). 

The first increment of this model produces a 

core product which fulfils the basic 

requirements of the software, and further 

increments contain the supplementary 

features. This increment is then reviewed and 

tested, by the developer and client, which 

allows a plan to be created for the next 

increment which details further features and 

functionality. 

Unlike the prototype model, which focuses on 

implementing and testing single features for 

each prototype the incremental build model 

focuses on creating an operational but 

‘stripped-down’ version of the product initially 

and then building upon this in smaller 

increments. It has similar advantages to the prototype model, but it allows for a product to have a 

clearly planned and linear path of development to the initial increment, whilst allowing the flexibility 

of further features to be reviewed and discussed.

4.2 JUSTIFICATION OF CHOSEN MODEL 
Due to the uncertain nature of the validity and potential unseen setbacks of the project, it was 

decided to use the incremental build model. The main reason for choosing this model is that the 

main bulk of the work involved in the project will be the initial increment of developing the Splotch 

software to work within a Cinder environment. This can be considered the ‘core’ feature of the 

project and an abundance of planning, understanding, and development will be needed for this 

initial increment; which lends itself to the linear approach that the first increment allows. Following 

this, the software will need to be assessed and reviewed to evaluate performance and feasibility of 

the software as a whole. After this assessment, subsequent features can be discussed and 

implemented with the knowledge of how the programs core functionality is performing. An example 

situation which lends itself to this model could be that, following completion of the core 

functionality, the performance of the software is subpar, this would allow the next increment to 

focus on performance following a review of the software. This is a problem which could not be 

accurately predicated until the program has had this initial increment, which, when using this model, 

allows the development more flexibility to react to potential problems.

Figure 4.1.3-a Incremental build model flowchart. 



13 
 

5 USING SPLOTCH WITHIN A CINDER APPLICATION 

This chapter will detail the process of creating a Cinder application that utilises Splotch to create a 

visualization tool.

5.1 ENTROPY 
‘Entropy’ is an “art- science collaboration” that combines public talks on astronomy with a live 

audio-visual performance (Markovic, 2016). The show is being aimed to be shown at various science, 

music, and art festivals around the UK and internationally. The show will be visualizing astronomical 

data from various real world experiments, as well as computational simulations supernova 

explosions. These visualizations will be accompanied by educational talks and specially produced 

musical tracks. The expected audience is expected to be several thousand people within the first 

year of the live performances (Markovic, 2016).

5.2 REQUIREMENTS

5.2.1 Gathering of Requirements 

Requirements for this project were gathered from one to one meetings with the client from the 

Entropy project. Meetings with the client were initially relatively regular in order to get a general 

idea of the project, already existing materials, and outline of requirements and work. As there were 

multiple chapters to the Entropy project, there were many options for how the work could proceed. 

Following these meetings, it was decided that the work on these project should focus on how to 

integrate loading large astronomical datasets within a Cinder application. These meetings allowed 

the project requirements to be defined precisely.

5.2.2 Functional Requirements 

1. Visualize astronomical datasets within a Cinder application- 

Existing work for the Entropy project has been built using the Cinder library. As such the 

client required the Splotch integration to also be within Cinder. The application must be able 

to use Cinder’s libraries whilst accuracy visualizing datasets.  

 

2. Ability to create images that are alike to Splotch produce images but within a non-HPC 

environment- 

The Splotch software is written with a HPC environment in mind, but the Entropy project is 

aiming to be an educational public project. Therefore, it is important the software has a 

lower level of accessibility for a user. This meant that the software should be able to be ran 

on a variety of systems, not just Unix environments, for any person who wished to do so. 

 

3. Read and edit Splotch parameter files- 

Having the ability for the program to edit the parameter file within the application 

streamlines the experience for the user, as they will be able to edit and load as they require, 

without having to exit the program or use an external editing tool. This also supports the 

ability for the user to move onto using the full Splotch software, as they can use the same 

parameter file they are editing here. 

 

 



14 
 

4. Real time interactivity- 

The user should be able to have some kind of control over the visualization once it has been 

loaded. This will at least include camera controls, but also the user should have some form 

of control over the aesthetics of the visualization in real time. Controls will also aim to be as 

intuitive and effortless as possible.

5.2.3 Non-functional Requirements 

The software will act as an extension of the existing Splotch software, using its source files as 

necessary, in order to create as close an image as possible within Cinder. The accuracy of this image 

will be determined by its similarity to the image that the Splotch software would produce of the 

same dataset. It will aim to be as performance conscious as possible, in order to minimise the 

computational overhead so as to allow for as large a dataset to be visualized, dependant on a user’s 

hardware. 

The application will, as much as possible, be as accessible to non-scientific and non-academic users 

so as to promote the public outreach aspect of the Entropy project. 

The final application will be released as an open-source program.

5.3 INITIAL RESEARCH 
Following and during the gathering of the requirements, it was important to fully understand the 

Splotch software so as to understand how best to approach integrating it into a Cinder application. 

As there is no precedent for astronomical visualization software within Cinder, and very little 

visualization tools for the Windows platform at all (most use a Linux emulation), there was a large 

period of research at the start of the project. At the time of the project, the documentation for the 

newest version of Cinder (0.9.0) was not substantial and the majority of the learning was performed 

by studying a subset of samples provided to observe how the library worked. 

However, the largest portion of time within this period was spent studying the Splotch software. This 

required the installation of a Linux distribution, as well as the sourcing of datasets to test the 

software with. The documentation for Splotch was almost non-existent which forced the studying of 

the software to rely largely on testing, and studying of the code. A substantial amount of help via 

conversations with developers who have worked on the Splotch software allowed a better 

understanding of its use. Example files were also provided from these developers. At the start of 

development, developer experience with the Linux operating system was sparse, and so time was 

also spent on becoming familiar with the use of the command line.

5.4 DESIGN 
Due to the nature of the application, a large amount of the inner workings of the application would 

only be discovered via exploration and testing of the software. It therefore seemed unrealistic to be 

able to create an in-depth design document of the code structure, and instead a general overview of 

how the software should performed was to be generated.

5.4.1 Proposed Solutions 

Following the initial planning stages, a document was produced to propose possible solutions to the 

task presented (see appendices). There were two solutions proposed. 



15 
 

5.4.1.1 Solution 1- Remotely connect to a Splotch machine, via a Cinder application. 

This solution would create a Cinder application which would act as an interface in which the user 

could load and edit a parameter file. The Cinder application would act as the front end, providing the 

GUI (Graphical user interface) to the user. The application would then send the resulting parameters 

to the Splotch software, which would have to ran on a Linux machine, to render the image according 

to the set parameters. Splotch would then send the data back to the Cinder application, which would 

either, output the image, or use the resulting data to create a 3D visualization. 

This solution would allow a user to produce the exact same image as the Splotch software would, 

except from a Windows or OSX system, whilst also being easy for them to use. 

The drawback to such a system would be that the user will need to have access to a HPC or generic 

Linux environment. As the project has an emphasises on being as accessible as it can, and as most 

data seems to place Linux market share as being below 2% of users (Protalinski, 2015) (Net 

Applications, 2016) this does not support this ideal. Also due to the possibility of having extremely 

large datasets as discuss in section 3.2, the data would have to also be stored in the Linux system to 

avoid the large amount of time it would take to transfer these to the Splotch software. This could 

potentially still be useful for the scientific community, but it also seems to add an unnecessary step 

when the user, which would need access to the Linux machine with both Splotch and the data stored 

on it regardless, would choose to use the Cinder application on a separate machine, instead of 

running the software directly.

5.4.1.2 Solution 2- Creating a Splotch-like Plugin for Cinder. 

 A second proposed solution was to use Splotch for the purpose of its readers and other functions to 

process the data into a form that a Cinder application could then access and use to create a 3D 

visualization on the same machine. The application would function in a similar way to the already 

existing Previewer for Splotch, but would be able to run on a Windows machine whilst also providing 

a GUI for the user. The image would be calculated via Splotch, and rendered via the Cinder 

Figure 5.4.1-a Application flow of remote connection solution. 



16 
 

application, which would also be providing the interactivity and offer the opportunity to provide 

additional information for the purposes of the Entropy project.  

The Splotch software would be compiled within the program and be running on the users’ machine 

without the need for them to have access to a Linux environment. This would allow the application 

to produce an image that replicates a Splotch image within Cinder. As the application would be using 

the same parameter files that the Splotch software uses, this would also offer the opportunity for a 

user to take that same file and run it via the complete Splotch program within a Unix environment. 

This solution would satisfy all functional requirements with the only drawback being that the images 

produced would not be the same images that Splotch itself would produce, but rather as close as 

can be achieved on the user’s machine.

5.4.2 Decided Solution 

Following positive discussion with the client regarding the solutions, solution 2 was deemed to be 

most suitable for the purposes of the Entropy project. 

Figure 5.4.1-b Application flow of solution. 



17 
 

5.5 TIMELINE 
A timeline for the project was designed at this point in time, which can be seen below. Modifications 

were made to the timeline during the project due to incorrect estimations. These modifications are 

discussed at their relevant time in section 5.7. Further modifications were also made to the timeline 

due to the TAO project (discussed in section 6). 

Task Name Duration Start Finish 

Research 48 days Thu 08/10/15 Sun 13/12/15 

   Initial meetings and outline of project 13 days Thu 08/10/15 Mon 26/10/15 

   Understanding Cinder 11 days Tue 27/10/15 Tue 10/11/15 

   Understanding Splotch 24 days Mon 09/11/15 Thu 10/12/15 

   Deliverable 1 Preparation 2 days Tue 01/12/15 Wed 02/12/15 

   Presentation 0 days Thu 03/12/15 Thu 03/12/15 

Implementation 46 days Mon 14/12/15 Sun 14/02/16 

   Planning Implementation 7 days Thu 03/12/15 Fri 11/12/15 

   Coding 40 days Mon 14/12/15 Fri 05/02/16 

   Testing 46 days Mon 14/12/15 Sun 14/02/16 

Write Up 27 days Mon 15/02/16 Tue 22/03/16 

Deliverable 2 deadline 0 days Thu 24/03/16 Thu 24/03/16 
Table 1 The original timeline for the project. 

5.6 IMPLEMENTATION 
The implementation of the application took the form of creating incremental prototypes, where the 

initial prototypes were the bulk of the work, and each sequential prototype added features onto the 

application in smaller increments. Each prototype would then be tested thoroughly before moving 

on. The focus was on getting the application to have its core mechanics working before moving onto 

code optimisation. Additional features could then be added at a later date. 

This section will describe an overview of how the application is working, and then provide a look at 

its prototype iterations.

5.6.1 Development Tools 

As briefly discussed under in section 5.3, the latest version of Cinder (0.9.0) did not have a 

substantial amount of documentation available, with the majority of information available being for 

the previous version (0.8.6). This meant that there would be a longer period of learning for the 

newest version of Cinder, as a more thorough studying of the provided samples would be necessary. 

However, as the 0.9.0 version of Cinder has a completely rewritten OpenGL API (Cider, 2015c) it was 

decided that the application will use the most up-to-date version available in order to be as 

compatible as possible moving forward. 

The IDE (integrated development environment) that was used was largely decided by its 

compatibility with Cinder. Both Microsoft Visual Studio 2013 and Microsoft Visual Studio 2015 are 

fully supported by Cinder 0.9.0, however only the former is supported using Cinder’s Tinderbox 

application- an application which can correctly set up a Visual Studio project with Cinder for the 

user. It was therefore decided to use Microsoft Visual Studio 2013 as an IDE, as the project can 

always be easily ported to the 2015 at a later date if necessary using Visual Studios in built tools.



18 
 

5.6.2 Integration with Splotch 

The main resource for the application was the Splotch software. This meant that the application will 

attempt to use as much as the original source code as possible in order to reduce its physical size on 

disk and also reduce the need for code to rewritten. It also serves the dual purpose of processing the 

data in the exact way that the Splotch software would. The main reference for how this application 

would integrate the Splotch software was the already existing Previewer application within the 

Splotch source files. The Previewer code was used as a basis for an interface between the Cinder and 

Splotch code.  

It was decided that the Cinder application would have its own edited version of the Previewer source 

files instead of accessing the original files as it does with the core Splotch functions. The reasoning 

for this was so the Splotch Previewer, and the Cinder application could function as two branches out 

from the core Splotch without interacting with one another. It would allow each program to be 

edited and produced separately. As they are both intended for different platforms, this would 

eliminate any potential conflicts as well as allowing each to play to the strengths of its respective 

platform. 

The main changes to the Previewer files were: 

 Removal of redundant code- the rendering and user interactivity for the application will be 

done via functions provided by Cinder. A large amount of the functionality in the Splotch 

Previewer was therefore unnecessary and removed. This also increasing code readability. 

 

 Porting of code for use on Windows- this included using the appropriate equivalent 

Windows libraries. It also included changes in the way the application reads the file path due 

to the difference in file systems between the two operating systems. E.g., Windows using 

backslashes in place of forward slashes. 

 

 Editing functions to work within the Cinder application- certain functions had to be edited 

in a way that the Cinder application could use them in a logical and efficient way. 

 

The core Splotch code also had to be edited minimally in order to be compatible with the Windows 

operating system. These edits were done under a “WINDOWSCINDER” macro definition so as to 

interfere as little as possible with the original code. The main edits made to the core Splotch code 

were made in order to allow it to compile on the Windows system and include changes to included 

libraries, and an added function. The Cinder application does not have its own copies of the Splotch 

code, and instead its functions are called from within the edited Previewer files.



19 
 

5.6.3 Cinder Interface 

The interface for the application is created using Cinder functions within the SplotchCinder class- 

The SplotchCinder class holds an instance of the Previewer class and an instance of the 

CinderRender class as can be seen in the above class diagram. This is the top level class 

responsible for managing the entire application. The main loop of the application is handled by the 

‘CINDER_APP’ macro which is provided by the Cinder library.  

When the application is loaded, the user will be presented with a Windows explorer window which 

will allow the user to find and select the parameter file that they wish to use for the visualization. 

The explorer window will only allow the user to select a file with the ‘.par’ extension. This acts as a 

failsafe for the system in the case a user tries to select something other than a parameter file.  

The application will then pass the path to the chosen parameter file into the Previewer’s 

‘LoadParameterFile’ function which will use the functions within Splotch to process the file and 

return a reference to the class which the parameter information is stored in. The creation of the GUI 

is then performed using the fields within the parameter file. This process is performed dynamically 

using a combination of Splotch and Cinder functions, and a dynamic multidimensional array. Writing 

the function this way allows the application to be able to load any number of parameter file 

variables and their fields. This is important in order for the application to keep up to date with any 

updates to the core Splotch functionality which may require new fields within the parameter file.  

Once the parameters from the parameter file have been loaded into the application and displayed in 

a parameter menu, the user can freely edit these values and save back to the file. Whilst all of the 

parameters are editable, not every parameter effects the image produced in this application. It was 

however decided that it was important to include the entirety of the fields regardless of their effect 

on the final visualization so as to allow the application to act as a complete entry to exit point for a 

Figure 5.6.2-a Application class diagram. 



20 
 

user to load, edit, and visualize data via Splotch on Windows. It also allows a user to take a 

parameter file edited within this application to use on the full Splotch software. 

It was decided to use Cinders built in interface functions as it allows the application to quickly add 

functionality which includes the ability to bind a function to a button on the menu, such as the ‘Load’ 

button. It also serves to keep the applications size to a minimum by using functions already included 

in its libraries. 

5.6.4 Cinder Renderer 

The renderer within the application is a very crucial part of the entire visualization application, as it 

produces how the application will visualize the data. As the application has the ability to deal with 

very large data sets with potentially millions of particles, it was also important to implement it in a 

way to attempt to keep as high a framerate as possible, with further thought to keeping the 

framerate at a stable point.  

The render starts by loading the applications shader assets into memory, and setting the cameras 

clipping plane. The clipping plane is set to an appropriately high number so it can include all particles 

from the dataset which can potentially span distances outside the range of the default values within 

the virtual space. 

The list of particles is then assigned to a new variable by calling a function from the ParticleData 

class which was passed into the renderer. Particle positions and respective colours are loaded into 

the shader via two SSBOs (Shader Storage Buffer Object) and drawn using an index buffer. SSBOs 

were chosen over UBOs (Uniform Buffer Objects) as they have the capacity to be as large as the 

graphics card memory limit (JeGX, 2014) which is helpful towards being able to render as many 

Figure 5.6.3-b Examples of loaded parameter files. The leftmost part of the image shows the parameter menu after having 
loaded the visualization- The upper most values above the separator are real time parameters that affect the renderer. 

Figure 5.6.3-c Code snippet of loading GUI parameters. 



21 
 

particles as possible. The position SSBO is required to be a vec4 for it to be able to be multiplied 

with the model matrix within the vertex shader. The colour alpha is always set to 1. 

Particles are drawn after invoking the glBlendFunc function in order to blend particle colours 

together where they overlap and simulate transparency. This results in an image which has a more 

realistic simulation of colours. 

A Gaussian blur is also created on the image by rendering the particles to a FBO (Frame Buffer 

Object), then passing this FBO through a Gaussian blur shader twice to create horizontal and vertical 

blur FBOs which is then drawn over the first FBO via additive blending. 

The index buffer is arranged in a regular way to create two triangles into a quad. Which is then 

computed into a circular sprite in the shaders and allows the application to present particles as 2D 

elements within the 3D space, known as billboards. This is for the purposes of performance within 

the application and the reason for using this method will be discussed in a further section.  

5.6.5 Shader assets 

The application currently computes the particle screen positions and colours using shaders. Shaders 

are computed on the GPU which means they are generally much faster in comparison to CPU 

computations (Rayne, 2014), in some cases this can up to 25 times as fast (Christensen, 2011). Using 

shaders with Cinder is relatively simple as it uses the GLSL shader language and even contains a class 

for easily loading a shader program. Computations were performed on the vertex shader when 

possible as a calculation on a fragment shader is much more expensive than a calculation on a vertex 

shader due to the fragment shader being executed once per pixel and pixel quantity in a scene 

generally outnumbers vertex quantity (Microsoft, 2016a). 

As previously discussed, the vertex shader for the application takes the position and colour SSBOs 

and uses them to compute a circular billboard sprite. It takes four vertices per particle maps those to 

a quad vertex. Using these various variables, along with the projection and model matrices, it 

computes the position so that the sprite will always be facing the camera within the application. 

Figure 5.6.4-a Code snippet of mapping particle position and colour into the SSBOs. 

Figure 5.6.5-a Code snippet of the vertex shader. 



22 
 

When this information is then passed into the fragment shader, the sprite is still quad shaped. The 

fragment shader computes the circle sprite by finding a specified radius of a circle from the centre of 

the quad. If any fragments are beyond that, they are discarded. 

Within the vertex shader the final colour for the particle is computed using its existing colour and 

any modifiers that are applied to it via the parameter menu. These can include brightness, contrast, 

and saturation. 

A Gaussian blur can also be toggled on and off for the final visualization. This is done via a fragment 

shader using an offset specified by the user. If a user toggles the blur on, then, during the rendering 

stage of the pipeline, the FBO that the particles are drawn into are drawn into a second FBO via the 

Gaussian blur shaders. This is performed twice- once for the horizontal blur, and a second time for 

the vertical blur. The results from the second FBO are then drawn over the initial FBO via additive 

blending. This creates the final blur effect on the visualization.  

A Gaussian blur is also used in the full Splotch software, and so this feature supports the 

requirement for creating images that replicate Splotch produced images. The result creates a much 

nicer final image, with particles that appear to be brighter when in close proximity to one another. 

 

 

Figure 5.6.5-b The Gaussian blur fragment shader. 



23 
 

Figure 5.6.5-d A cropped image of the blur off. 

Figure 5.6.5-c The same image with the blur on. Notice how areas with a higher density of particles appear brighter. 



24 
 

5.7 PROTOTYPES

5.7.1 First Prototype 

The initial prototype for the application came in the form of using Cinder to read in a text file filled 

with random x, y, z coordinates. It would then render a sphere in each position. This was useful in 

order to identify the best way to render shapes within Cinder. Whilst the method that was used in 

this prototype was easy to implement and use, it ultimately suffered bad slowdowns from using just 

10,000 points. This was far away from the amount of points the application could potentially be 

drawing, and so a new method would have to be conceived going forward.  

This prototype was completed under the period of time of learning Cinder in preparation for the rest 

of the project.

5.7.2 Second Prototype 

The next few prototypes focused on the best way to integrate the Splotch files into the application 

and allow it to be compiled. The method for achieving this, was to identify which function in which 

file was needed to called from Cinder in order to retrieve the list of particles. At this point in time, 

the plan for the application was to use only the reader files from Splotch (and any relevant includes 

needed), and take the relevant particle list after using these- without the need to use the Previewer 

files. However, it seemed counter intuitive to disregard how the Previewer was working with the 

Splotch readers when it was performing a similar function to how the Cinder applications integration 

with Splotch was being planned. Therefore, it was decided for the pipeline to go through the 

Previewer files as they offered a framework which was already integrated with the core Splotch files. 

After this point, the Previewer files were slowly added to the project one by one, meticulously 

resolving errors as they came up- the majority being from the differences in platform the software 

was ran on. The rendering portion of the files were all commented out, as the focus was on simply 

allowing the application to include and compile with the relevant Splotch and Previewer files. Any 

and all files were included if they were used by Splotch, regardless of whether the Cinder application 

would need them in the final application. This was to reduce time spent on porting files and classes 

which would not end up being used in the final application. Eventually the application was compiling, 

however no functions from Splotch were yet to be called. The application in itself, was just creating a 

window.

5.7.3 Third Prototype 

The next prototype was focusing on allowing the application to specify a parameter file and being 

able to pass this into Splotch. When running the original Splotch, the path to the parameter file is 

specified in the command line. As the application would not be running from the command line, the 

path to the file was hard coded for the purposes of testing. The main problem in this prototype was 

adapting the way the Previewer manipulated the parameter file path due to the difference in file 

systems on a Windows and Linux system. One example of this was modifying the way the application 

finds the path its exe file. Which can be seen in the figures below. The variable containing the path 

to the exe does not end up being utilised in the final application, but at the time the prototype was 

attempting to emulate the same functionality, but on the Windows platform. The final state of this 

prototype had the application finding and utilising the parameter file, feeding the data into its 

appropriate reader, and attempting to read that data. It was at this point that errors were occurring 

due to out of range memory copies. 



25 
 

Time taken unsuccessfully attempting to fix these errors meant that the approaching deadline for 

the end of the coding period in the original plan had to be adjusted, as it would no longer be an 

accurate estimation.

5.7.4 Fourth Prototype 

Following the successful implementation of the application finding and attempting to read the data, 

the next prototype focuses on solving the memory errors, as well as how we could visualize the 

particles within Cinder. Since the previous prototypes had been using a 9.24GB sized dataset, the 

application was tested on a smaller sized dataset to identify if this was the issue. Following tests on a 

46MB sized dataset the application was able to successfully compile and load the data. This data was 

Figure 5.7.3-b Code snippet of part of the original load function for finding the path of the exe of the application. 

Figure 5.7.3-a Code snippet of the modified function to work on Windows. 



26 
 

not being rendered on screen at this 

point however. The particle list that was 

produced by Splotch was haphazardly 

fed back up through the pipeline of the 

application. The original renderer from 

the first prototype was then edited to 

work with this particle data. The 

application was able to render spheres 

in the positions that were read from the 

data. 

Due to the heavy performance from 

trying to render around 370,000 

spheres in this dataset, the application 

had to be set to only render a 

hundredth of the particles. As the strain 

from even rendering a hundredth of the particles was so high, the camera controls were not working 

correctly. This lead to the particles positions being scaled down so they could be seen by the camera 

more easily. 

This prototype was the proof of concept that Cinder was able to correctly communicate with Splotch 

in order to render datasets.

5.7.5 Fifth Prototype 

It was obvious that the renderer was not going to be able to render the particles in their correct 

positions as spheres, as this would strain the system massively. Therefore, this prototype was 

focused on creating a renderer which would be able to visualize the data in a meaningful and 

accurate way. 

Initially it was planned to use the renderers that were included in the Previewer, so as to produce 

the same visualization, but via Cinder. A large amount of time was spent attempting to get these 

renderers to implement correctly with Cinder, however there were many compatibility problems 

which prevented this. These include OpenGL version discrepancies as well as platform differences. It 

was decided therefore to dismiss this plan, and write a dedicated renderer using Cinder functions. 

Ultimately, this seemed like the option that better suited the functionality requirements listed. As 

the application was using Cinder regardless, it should therefore attempt to use it in its fullest extent 

in order to exploit all advances that it offers. 

Figure 5.7.4-a Screenshot of the dataset being displayed as spheres. 

Figure 5.7.5-a Screenshot of the data being rendered via the initial Cinder renderer. 



27 
 

A dedicated Cinder renderer was therefore created as has been described in section 5.6.4. This 

prototype’s renderer version is the basis for the final version which was described. The final version 

is however, much more streamlined and effective. 

The unexpected added time that the creation of the dedicated Cinder renderer meant that the 

coding deadline had to again be pushed back.

5.7.6 Sixth Prototype 

Now that the data was being rendered in a meaningful way, the focus for this prototype was 

implement a Gaussian blur. This was so the particles could appear to ‘glow’ where they are more 

concentrated and colourful. This is a relatively computationally cheap way to simulate the particles 

producing light. 

The two pass Gaussian blur implantation is not the fastest way to calculate a blur as the application 

has to calculate each pixel through a 𝑛 sized convolution kernel twice. The Cinder application has a 

kernel width of 21 as, after testing, this provided the best trade-off between image quality and 

performance. 

At this point in the development cycle, the discussions and preparations for the TAO project were 

underway. This was an unexpected part of the project as a whole, and as such, in order to still be 

able to fulfil the requirements for this project, as well as being able to complete the TAO project, the 

testing cycle for this project was cut down.  

5.7.6.1 Seventh Prototype 

By this point, the application had successfully integrated Splotch in a way that would allow it to 

visualize the particles in a manner that is similar to the 

Previewer. The proposal for this prototype was to test and 

allow the application to be compatible with larger datasets.  

The only larger dataset available to the project at the time 

was a 9.4GB dataset in RAMSES code (Teyssier, 2002) and so 

tests of the application were based on this. The Visual Studio 

project for the application was created using Cinder’s 

Tinderbox application. The default values for which create a 

32bit application. Following investigation of the memcopy 

error that the application was producing when attempting to 

load this dataset, it was theorised that since the project was 

producing a 32bit application, it was unable to load any of the 

dataset past a 3GB limit as opposed on 32bit applications 

(Rutter, 2012). This was a design oversight when the project 

was initially planned. This meant that if the application was to 

load any data that was larger than 3GB it would have to be 

ported to be a 64bit application. 

This porting was done by creating an entirely new 64bit 

project so the library linking could be correct and compliable 

before moving the existing code. This was a slow process, but 

it also offered an opportunity to clean up the project by 

removing unnecessary files that were still present, as well as 

organising the necessary files into an organised file structure. 

This made future work more streamlined. 
Figure 5.7.6-a Screenshot of the Visual Studio 
structure. 



28 
 

Following the porting of the application to a 64bit application, it was able to load and visualize the 

larger dataset. This does restrict the application to 64bit operating system, which lowers the 

accessibility level, but with 92.8% of new computers being sold worldwide, which have the Windows 

operating system, running a 64bit architecture (Popa, 2015) this trade-off is acceptable. 

This unexpected prototype stage, which was the fault of an oversight during the planning period 

meant the estimation for completion of the project was again pushed back. The repercussions for 

this was that there was going to be less time for testing later.

5.7.7 Eight Prototype 

The eighth prototype focused on adding in the ability for a user to change attributes for the 

visualization render in real time. Initially this took the form of the ability to toggle the blur and 

modify the blur strength. This eventually expanded into the ability to modify the individual particle 

size, as well as variables which effected its saturation, contrast, and brightness. It was decided to 

allow a user to modify these parameters to increase interactivity within the application. Whilst a 

default value is provided for each of the parameters, they may not be appropriate for every set of 

data, and so are modifiable within a specified range.

Figure 5.7.6-b Screenshot of the large 9.2GB RAMSES dataset being visualized within the Cinder application. 



29 
 

5.7.8 Ninth Prototype 

The final prototype for the application adds the ability for the user to load and edit a parameter file 

before loading the relevant data. The requirements for this feature were: 

 A user can point to a parameter file using an explorer window. 

 A user can load and view all the fields from this parameter file. 

 A user can edit these values. 

 A user can save edited values back to the parameter file. 

With these requirements in mind, a function was constructed to interact with the parameter file. It 

uses a Splotch function to get a reference to the loaded parameter file. It will then dynamically 

create an array based on the size of the parameter file. Following this, the “Load” and “Save” 

buttons are bound with their respective functions using a Cinder function. 

The parameters are loaded into the dynamic array which is then used to create the parameter menu 

within the same loop. A separate array was used so as to allow the application to have its own copy 

of the parameters, which it could edit and save freely and independently of the original values. This 

gives the potential for the application to know which values have been modified and their difference 

against the original values. This could be used to create a feature at a later date which interpolate 

between different colour palettes for example. The function to write back to the parameter file uses 

the standard C++ ofstream class. The function writes the edited parameters back to the file line by 

line, before deleting the dynamic array, and rereading the parameter file with the new values. 

At this point in time, the project was past its coding period deadline and into the testing stage of the 

project. Although tests were carried out at the end of each prototype, a thorough dedicated testing 

period that was planned to take place at this point in time, was unable to be performed due to the 

longer than expected coding implementation, and also the commitment to the TAO project.

Figure 5.7.8-a Code snippet of dynamically loading the parameters. 



30 
 

5.8 TESTING 
In order to ensure that the application is fulfilling its requirements it needs to be tested thoroughly 

in an orderly framework. Myers, Sandler, & Badgett (2011) talk about the complexity and necessity 

for extensive testing before going on to define software testing as: 

…a process, or a series of processes, designed to make sure computer code does what it was 

designed to do and, conversely, that it does not do anything unintended. (Myers et al. 2011, 

p. 2) 

The importance of testing is stressed by Samaroo, Thompson, & Hambling (2015, pp. 11-12), who 

explain that software failures can potentially lead to loss of money, time, and reputation, and in 

extreme cases such as software for hospital or aircrafts- injury or death. Although any errors in the 

application for this project are not likely to cause any dramatic problems such as these, it serves as 

an example of how it is still critical to test the application to ensure it runs in its intended manner.  

Jorgensen (2013) states that “the essence of software testing is to determine a set of test cases for 

the item to be tested”. He goes on to talk about “Reference Testing”, where a system is judged by 

“expert users” who can tell if the application is producing the correct results. In the case of the 

application in this project, this kind of reference testing is being performed, not by “expert users” 

but by its comparison to the Splotch output image of the same datasets. The Splotch image can be 

considered to be the “expert produced result” and determining if the applications visualization is 

producing a similar enough result can be considered to be the “reference test”. Of course this 

comparison does not produce any tangible or concrete test results unless we clearly specify what the 

criteria for “similar enough” is.

5.8.1 White and Black-Box Testing 

Black-box testing (also known as input/output driven testing, or functional testing) is a type of 

testing where the tester is only concerned with the output of the program given the inputs, and the 

inner workings is not of concern. Test cases for black-box testing have two advantages according to 

Jorgensen (2013, pp. 7-8): 

1) They are independent from the software implementation, meaning that the test cases can 

still be useful even if the implementation changes. 

2) Test case development can occur in parallel with the software development, reducing 

overall development time. 

Meyers et al. (2011, pp. 9-10) discusses that it is not possible to exhaustively test an application in 

this manner, as a tester would have to make use of every possible input condition as a test case, and 

this is simply not possible in any non-trivial program.  

A contrasting testing approach is known as white-box testing (also known as logic-driven testing, or 

structural testing), where the tester is permitted to examine the internal structure of the program. 

Meyers et al. (2011, p. 10) explains that the most thorough application of this method is to execute 

all possible paths of control flow through the program. However, the number of paths could be 

unfeasibly large, and this does not provide a realistic approach. It seems then, that a mixture of both 

testing methods should be applied in order to be able to provide, as closely as possible, a complete 

but realistic approach to testing the application.



31 
 

5.8.2 Module (Unit) Testing 

Module, or Unit, testing is a method of testing that focuses on breaking down the application into a 

series of modules which are tested individually. This allows the testing method approach to be more 

manageable, especially when dealing with large applications. As a module is isolated and tested 

away from other code, this eases debugging tasks, as an error will be known to have occurred within 

the tested module, as Meyers et al. (2011, p. 85) mentions. 

Defining test cases for module tests consists of defining the input and output for the module and 

then analysing the source code and logic flow using a white-box method. 

5.8.3 Testing Implementation 

For the purposes of the artefact, a combination of module testing, and black-box testing was chosen. 

It was decided to test the Splotch function using the black-box method, whilst module testing would 

be performed on the core application. 

As the Splotch software is an existing piece of software with its own independent development, it is 

assumed that the software has been, and is, the subject of its own testing completely separate from 

this project. Therefore, as the source code for Splotch is subject to change without regard for this 

projects application, it seemed that the testing for the project should only be concerned with the 

inputs and outputs for these functions. It was also unrealistic, given the timeframe of the project, to 

be able to thoroughly test the Splotch software and the projects artefact in unison. 

The testing for the Cinder reliant parts of the artefact would be performed using the unit testing 

method, as this is a much more manageable scale to perform this method on. Functions were tested 

individually as per their requirements of use at the end of each prototype cycle- these can be found 

in the appendices. 

As there was a limited availability of appropriate datasets available to act as an input for the project, 

testing for as many inputs that were desired was not possible. This severely limited the effectiveness 

of testing. Furthermore, due to the unexpected opportunity for the project described in section 6, 

the testing for the project described under this section was not as thorough as originally planned, as 

time was diverted onto the new project. Because of these reasons this means that there are likely a 

number of unknown bugs still in the application.



32 
 

5.9 EVALUATION AND FUTURE WORK

5.9.1 Summery 

Looking at the complete artefact of the project, it can be argued that is has largely been a success. 

The application has fulfilled all functional requirements that were gathered at the start of the 

project. The application has been designed in a way that allows it to be scalable and reliable, using 

justifiable decisions. The application is successfully using Cinder functionality in order to work. 

Although this functionality can be considered to only be shallow in terms of what Cinder can offer, 

the application is built in a way that allows it to easily integrate further with Cinder. This being said, 

the application serves as a proof of concept that Splotch can be used in a more accessible 

environment, and also serve as a framework for loading and sorting astronomical datasets into a 

form that is easily exploited. 

The image that can be produced with the Cinder application is not as accurate as the Splotch 

produced image, however it is rendered in real time within an interactive 3D visualization. 

5.9.2 Performance and Optimisation  

The application has successfully been tested to be able to visualize at least 29,358,022 particles at an 

acceptable frame rate (more than 30 frames per second). This was performed on a computer with an 

Intel I5-3570 CPU at 3.40GHz, 16GB of RAM, and an Nvidia GTX 970 2GB graphics card. In order to 

render a dataset, the target computer must have at least the size of the dataset in free RAM. This is 

the largest potential issue for users of the application and would be the priority of further 

optimisation. 

The application makes use of Splotch’s OpenMP support which increases the load time of the 

datasets by allowing the application to use multiple threads (Microsoft, 2016b). The implementation 

of Splotch’s support for Open MPI and CUDA could also be helpful for decreasing load times for 

larger datasets, but are not currently implemented in the final artefact. 

The Gaussian blur is using a linear sampling method which takes advantage of fixed function GPU 

hardware, and can increase the performance of the blur by up to 60% compared to using a discrete 

sampling method (Rákos, 2010). The blur currently has to do two passes through the shader (once 

Figure 5.9.1-a Comparison between a Splotch produced image (left) and the Cinder application’s produced image (right) of 
the same dataset. 



33 
 

horizontally, and once vertically) which gives it a complexity of 𝑂(𝑛) for each pixel, this is faster than 

a single pass Gaussian blur, which would have a complexity of 𝑂(𝑛2). Blur performance could 

further be increased by down-sampling the original FBO to a half resolution, rending the blur FBO, 

and then up-sampling this back to the target resolution (Filip, 2014).  

Although care has been given to allow the application to be as performance conscious as possible, 

given more time for the project, the focus would to be on optimising the application to work on a 

broader range of computers.  

5.9.3 Methodology 

The methodological approach taken during the time of the project served mainly as a framework, 

rather than truly influencing the project timeline or functionality. It allowed the project to flow in a 

way that focused on the development and implementation through testing, rather than excessive 

planning which could lead to time being wasted in an already short development cycle.  

Due to the nature of the project and the feasibility of the Splotch implementation working at all, the 

methodology allowed the project to be broken up into several smaller parts which each focused on a 

single aspect of the application. This was helpful in tracking progress and was overall a good fit for a 

project of this kind.

5.9.4 Further Features 

If the project were to be developed further than providing more optimisation, then new features 

would be added which would mostly take advantage of additional Cinder functionality. Further 

features could include:

5.9.4.1 Particle textures 

Mapping textures onto individual particles could allow for a more aesthetically pleasing and realistic 

visualization. These could also be animated using Cinder’s ability to load the gif file format (Kepler, 

2015).

5.9.4.2 Real time light producing particles 

Using real time lighting on the visualization would further increase its accuracy and aesthetics. Due 

to the potential number of particles, this system would have to be very well designed so as to be as 

optimised as possible, and could potentially be a large undertaking.

5.9.4.3 Tested and supported on OS X 

As Cinder officially supports the OS X operating system, the application should also be extended to 

be able to run on this platform. Support for OS X was outside the scope of this project, but as Splotch 

already has support for running on a Macintosh computer, porting and testing the application for 

this purpose would be a desired functionality. 

5.9.4.4 Tested and supported on mobile platforms 

iOS version 6.0 and later is listed as having official support for the Cinder library (Cinder, 2015d). It 

should therefore be possible for a port of the application to be running on devices supporting these 

versions.  

Android support for Cinder is not listed as having official support and is still undergoing active 

development (chaoticbob, RFC: Cinder for Android and Linux, 2015). Targeted platforms are Android 

KitKat, Lollipop, and Marshmallow. This should be considered as a potential platform for the 

application when it has been provided with official support. As Android uses a version of the Linux 

kernel (Android Interfaces and Architecture, n.d), and the Cinder development is producing the 



34 
 

Android and Linux port in unison (chaoticbob, Android and Linux port #1200, 2015) a Linux port 

could also be developed alongside an Android version. 

5.9.4.5 Further interactivity within the visualization 

This could include informative text that appears over particular parts of the visualization This could 

be integrated with various hardware that Cinder supports- such as VR (virtual reality) headsets like 

the Oculus Rift (Hodgin, Oculus Rift: Gravity, 2013), or the Leap Motion device (Selikoff, 2013). These 

can even be combined to produce an extremely immersive experience (Hurlbut, 2014). Using this 

hardware together could produce an application where the users entire field of vision is 

encompassed by the HMD (head mounted display) whilst they can pan, and zoom using hand 

gestures with the Leap Motion.

5.9.5 Recommendations 

A few specific recommendations can be suggested for any projects that are similar in nature. 

5.9.5.1 Cinder 

 The samples included with the Cinder download are the best way to understand how to use 

the library correctly. The documentation for Cinder is sparse and does not necessarily have 

an explanation of how to use the library correctly, but the samples are commented with 

useful advice which can help. The samples can also highlight useful functions, not mentioned 

in the guides. 

 Create an account on the Cinder forum and ask for help or advice from users as there are a 

number of very experienced Cinder developers on the forum who are always willing to offer 

this.

5.9.5.2 Splotch Integration 

The largest use of time in this project was the studying and understanding of the Splotch 

software in order to correctly implement it within the application. Minimise that time by: 

 Having a good understanding of the Linux system in order to be able to test Splotch and 

its capabilities. Editing the parameter files and studying the resulting image produced 

through Splotch can be very insightful in understanding how parameters effect the 

image. A Splotch manual (see the first draft in the appendices) has been created in 

conjunction with this project which should also offer insight into the installation process 

as well as important parameter variables. The final version will be available with the 

Splotch download. 

 Adding the Splotch files into a project within Visual Studio allows a better understanding 

of how the source files interact with one another. Visual Studios features can help better 

identify call hierarchies and program flow. 

 Work backwards from the intended functionality. Look at what the functionality will 

perform and decide which functions and dependencies from Splotch need to be 

accessed in order to perform this functionality.  

 Test often and well in order to highlight problems early on, so that they can be fixed 

before moving forward.  It is critical to be able to perform proper debugging in order to 

be able to understand how the software is working. 



35 
 

6 INTEGRATING SPLOTCH FOR USE ON THE SWINBURNE GSTAR 

SUPERCOMPUTER

6.1 INTRODUCTION 
During the latter stages of the previous projects development cycle, an opportunity was presented 

which would allow the chance to integrate Splotch to work within a new HPC environment. This was 

facilitated by developers of Splotch and would form a client based project through said developer for 

the Centre for Astrophysics and Supercomputing, based out of the Swinburne University of 

Technology in Melbourne, Australia.  

The Green II HPC system at the supercomputing centre contains two facilities: the GPU 

Supercomputer for Theoretical Astrophysics Research (gSTAR), and the Swinburne Supercomputer 

for Theoretical Academic Research (swinSTAR) (Hassan, n.d). Both systems share a 3 Petabyte Lustre 

file system. 

This project would be using the gSTAR system which is a collection of 50 nodes, each containing: 

 2 six-core Westmere processors at 2.66 GHz (each processor is 64-bit Intel Xeon 5650). 

 48 GB RAM. 

 2 NVIDIA Tesla C2070 GPUs (each with 6 GB RAM). 

(Hassan, n.d) 

The main goal for the project would be to have a Splotch executable working on the gSTAR system 

that would allow the client to take advantage of the HPC environment in order to produce images 

using large datasets via Splotch. This executable would go on to be part of the Theoretical 

Astrophysical Observatory (TAO) interactive system (Theoretical Astrophysical Observatory (TAO), 

n.d). 

The TAO is an online virtual laboratory that houses mock observations of galaxy survey data (Bernyk, 

et al., 2016). It uses the gSTAR system as a backend which hosts a scalable dataset cluster. Users 

interact with TAO through a web interface where they can select from various options to define the 

properties of the visualization requested. The user is the notified via email which allows them to 

then download the outputs to their local machine (Bernyk, et al., 2016, p. 2). 

TAO offers a unique service for astronomers which requires no programming knowledge in order to 

use the system (Bernyk, et al., 2016, p. 3). This is in the spirit for keeping the barrier of access low, 

and is the exact same sentiment that was used for the creation of the Cinder application in the 

previous section of this text. Further similarities are noticed within the initial proposals for the 

Cinder application, which suggested a system similar to TAO (see section 5.4.1.1 and appendix 1). 

However, TAO aims to produce static and accurate images for astronomers (Bernyk, et al., 2016, p. 

16), whereas the Cinder application focused on a broader interactive visualization for the public 

outreach and the Cinder community.



36 
 

6.2 INITIAL PLANNING 
Planning for this project took on a more practical approach as the timeframe for completion was 

short. Requirements for the project were gathered via email correspondence with the client and via 

discussions with the Splotch developer contact. Initial requirements gathered for the project were: 

1. Splotch being compiled on the gSTAR system. 

2. Splotch is able to produce an image of a sample dataset. 

Initial requirements were kept relatively simple as there was a going to be a reasonable amount of 

time to understand how to work within a HPC environment. The plan was simply to copy the Splotch 

files onto a personal home directory, and then compile and run this with the snap_092 data that is 

provided with the Splotch download. 

Working with a HPC environment was not the simplest adjustment to make. It entails working purely 

off of the Linux command line, which in itself requires a knowledge of the relevant commands. 

However, working with Splotch on a Linux installation for the previous project lent itself greatly to 

the task at hand, and meant that the learning period was not too great.  

Two new concepts, were the use of environment modules, and the job queue for requesting jobs on 

the system. Environment modules are a way to “dynamically modify a user’s environment via 

modulefiles” (Furlani, 1991). Use of modules was a relatively straight forward use of commands and 

offered a way to quickly switch out versions of modules when needed. It was however, cumbersome 

to re-add all the appropriate modules when working on a new node. These module commands could 

have been added via an executed script, however, as different module versions were being tested 

constantly, this was never done. 

The job queue was also a relatively simple learning process. It was simply a case of understanding 

the commands, and also the hardware available for use. As the wall time for most of the use of the 

nodes was lower than 30 minutes, jobs were, if hardware requested was accurate, granted instantly. 

Following these adjustments, Splotch was compiled on the gSTAR system using a generic Linux 

makefile option. The snap_092 data was then used to produce an image. 

After further correspondence with the client via email, a sample test dataset was provided that the 

Splotch software would be required to process. This file, mini_millennium.h5, was a 372MB file in 

the HDF5 format. The output of the contents of the file showed that the data was stored as 

compound data, which is a format that is similar to a struct in C (The HDF Group, 2015), where 

member variables were stored under grouping ‘datasets’. 

The advantage of using HDF5 as a file format is that it is fast to access and fully portable on any 

platform, even with applications written in different programming languages (The HDF Group, 2011). 

It is also designed to support parallel I/O (input/output), and has no theoretical limit to the size of 

data that is can support (The HDF Group, 2011). 

In regards to using this dataset within Splotch, Splotch already has a HDF5 parallel reader, however 

this reader could only read files which have 1D or 3D datasets with no groups. This meant that the 

reader would have to be adjusted to accommodate the dataset. Therefore, the new client 

requirement was: 

1. Have Splotch be able to read and produce an image of the mini_millennium.h5 dataset on 

the gSTAR system. 



37 
 

For the purposes of the project workflow, this was broken down, at the start of development, into 

sequential subtasks which are as follows: 

1. Gain an understanding of the HDF5 format. 

2. Source a smaller compound HDF5 file for purposes of testing and studying the Splotch 

reader, and how it responds to parameters within the parameter file. 

3. Adapt the reader to read HDF5 compound datasets. 

4. Test the reader on the mini_millennium.h5 file. 

Further goals not strictly relating to the requirements at this stage were as follows: 

1. Compile Splotch to take advantage of using Open MPI. 

2. Compile Splotch to take advantage of CUDA hardware. 

Following the definition of these subtasks, the main work of the project was undertaken and the 

results of which can be found in the succeeding section.

6.3 ADAPTATION OF THE HDF5 READER 
The adaption of the reader was 

written in a way so as not to 

interfere with the original readers’ 

functionality. The first step was 

therefore, to let the reader know 

that it would be dealing with 

compound data, as it would need to 

function different dependant on the datatype. As is possible with HDF5 compound data, a single file 

could hold multiple structures, each under a different dataset parent, therefore, a user would need 

to specify which dataset they wished to access. The simplest way to do this was to add two new 

parameters within the parameter file: is_compound_data- which is a Boolean value to tell the 

reader if it is dealing with compound data or not, and dataset_name- which is the name of the 

dataset that the user wishes to read. 

In order to read from the compound dataset a structure was added to the 

reader which would act as the buffer to store the data. Each field of the data 

(in this case the x, y, and z position, colour information, smoothing length, 

intensity, and correlating snapshot of each particle) is replicated in the 

structure. The reader will create an array of these structures to the size of the 

amount of particles that the current parallel process has been assigned. 

Following this the reader will create a new compound datatype the size of the 

structure, which the reader then inserts with the members that were defined 

in the structure. The reader loops over all the fields, using a switch statement 

to only insert the fields that have been specified in the parameter file. This will 

save the reader from reading fields that are not used. This then, gives us a 

compound datatype that is an effective copy of the structure, and is used to 

define how the data is read into the buffer when the file is read. Memory dataspace and dataset 

dataspace is also set before the read in a way that it is compatible with parallel processing. 

Figure 5.9.5-a Code snippet of the reader checking the new parameters. 

Figure 5.9.5-b Reader 
buffer structure. 



38 
 

After the file has been read into the data buffer, the objects are then closed, and the data can be 

accessed like a regular structure. The reader will then copy the data into the particle vector that is 

used by the rest of the Splotch software. This process will check if the particle has the correct user 

specified snapshot ID (set in the parameter file), and if so will then proceed with the copy. It will 

keep an independent count of the particles that have been copied, so that the vector can be resized 

so as not to later render empty points. 

Further modifications to the reader include an added Boolean parameter named 

print_snapIDs_in_file_ONLY, which will only read the snapshot numbers that each particle 

corresponds to in order to collect all the snapshots that are available in a file. The reader then sorts 

the vector they are stored in and prints to console, before exiting. This is useful if the snapshots 

available are unknown to the user.

6.4 FURTHER WORK 
On completion of the adaptation of the HDF5 reader, Splotch was compiled to take advantage of the 

Open MPI library. This was a case of editing the makefile to link to the correct library locations on 

the gSTAR system. The same was also completed with the CUDA libraries at a later time. 

Using 12 MPI tasks on a single node, a set of 55 images were rendered of each snapshot in the 

mini_millennium.h5 dataset. These were then rendered in a video to form a timeline of the data 

(please see files on disc) and, along with technical information regarding rendering time, sent to the 

client via email. Details on rendering times and tests can be found in a later section.  

Figure 5.9.5-c Code snippet of the data being copied into the points vector. 

Figure 5.9.5-d Code snippet of the reader printing snapshot numbers. 



39 
 

Following a call with the client, a larger dataset 

(181GB in size) was made available on the gSTAR 

system named sage-millennium.h5. Further 

requirements were also gathered in regards to 

how to prepare Splotch to be integrated onto 

the TAO interactive system. These include: 

1. A calculated camera place- there should 

be some way for Splotch to calculate a 

camera position relative to the data, 

without the need to manually set one. 

2. Default brightness and smooth length 

values- These should either default to a 

hard coded value to act as a starting 

value to further tweak, or they should be 

calculated relative to the data. 

Deliverables were also agreed to be a compiled Splotch exe file, and an example parameter file. 

Fortunately, in regards to the first requirement, a system like this was already in place within the 

Previewer for Splotch. Porting this over to the main Splotch system was a case of adapting the core 

Splotch code to accommodate it. A new BoundingBox structure was added to the 

splotchutils.h file- which has the ability to compute the maximum and minimum particle 

positions for each axis and thus define a box. A new class was also created named 

Camera_Calculator which would hold the functions needed for computing the camera position 

relative to the data.  

In order to make these requirements as streamlined as possible, an automated camera position will 

be calculated if the any of the camera x, y, or z positons are not defined in the parameter file. A 

parameter can also be set to define the face of the bounding box for the camera to focus on if 

required. If this is not set, it will default to the front of the box. The field of view will also be taken 

into account when calculating a position in order to fit the entire box in the final image, but this too, 

will default to a defined value if it is not set in the parameter file. 

The brightness and smoothing length values are two variables that are very specific to each dataset, 

and so it became difficult to determine a default value for these. One possible way to address the 

brightness, would be to devise an equation which would take into account the amount of particles to 

be rendered and increase or decrease the brightness value accordingly, i.e., if the scene has less 

particles, the brightness increases, and vice versa. The smoothing length would also have to be set in 

a similar way. This however, would need to be included in each reader, as there are slightly different 

methods of using it dependant on the reader.

Figure 5.9.5-a Snapshot 39 of the mini_millennium.h5 
dataset. 

Figure 5.9.5-b Camera calculation code using the bounding box and new Camera_Calculator class. 



40 
 

6.5 OPTIMISATION AND TESTING 
Initial benchmarks for the snapshot with the highest amount of particles in the mini_millennium.h5 

file (this was snapshot 39 which has 37,428 particles) was at around 0.6s with 12 MPI tasks. Running 

the benchmark on a snapshot with a very small amount of particles (snapshot 12 has 28 particles) 

also seemed to take around 0.6s. This led to the interpretation that 0.6s was the ‘base’ time for this 

dataset, and any difference in particle amount was too small to make any meaningful difference in 

time. Therefore, the larger sage-millennium.h5 file was used for the basis of the testing. This dataset 

contained 752,849,670 particles across all of its snapshots. 

Previous to the final version of the reader that was implemented on the gSTAR system (as described 

in section 6.3), an earlier adaptation was created and tested. This version, like the final version, used 

a structure to act as the buffer for the data from the file. However, unlike the final version, each field 

of data would have a separate array of structures, each with a single float member (4 bytes) holding 

the fields data. This means that, if 𝑥 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠, then the memory size during each 

fields read would be 4𝑥 bytes, e.g., in the sage-millennium.h5 dataset, if reading all particles, each 

fields read would take 3.01GB of memory.   

The reader would copy all particles, from all snapshots, into the final particles vector, meaning that 

the particles vector most likely contained more points that were not going to be rendered, than it 

did points that were. During its read of the particles corresponding snapshot number, the reader 

would add the position of any particles with the incorrect snapshot to a separate vector. Finally, the 

reader would loop over this vector, and change the colour of any particle that the reader did not 

want to see in the final image to black.  

To summarise, this meant that, although the final image would not include the incorrect particles, 

they were still being read into the particles vector. As each particle uses 30 bytes of data (Dolag, 

Reinecke, Gheller, & Imboden, 2008) this meant that the particle vector for the sage-millennium.h5 

file would be 22.58GB in size, regardless of the snapshot specified. To give an example, snapshot 12 

contains 187,507 particles. This would only have 5.625MB worth of particles and is just under 

0.025% of the total particles in the file. However, the reader would still read the further 99.975% of 

the file. 

An optimised version was therefore created as has been described in a previous section. The 

optimised version will still read the entirety of the data into the buffer using 

(4 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠) ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑒𝑙𝑑𝑠 

in bytes of memory at a single time. However, it has the advantage of checking if a particle has the 

correct snapshot before it is read into the particles vector. This saves the reader from having to 

create the vector of inactive particles and the subsequent loop process of setting them to black. It 

also has a lower chance of producing errors, as the particles vector only contains the points that it 

will eventually render. This too, helps the automated camera calculation, as it is not taking into 

account the invisible particles during its calculations. The problem however, with the current 

iteration of the reader will come when the dataset is large enough for this memory usage outlined 

above to be more than the system has to offer.

6.5.1 Benchmarks 

The benchmarks for that were carried out on the dataset can be found in the table below. All 

benchmarks were performed on snapshot 28 of the sage-millennium.h5 dataset (containing 

16,042,057 particles), using calculated camera positions at its ‘FRONT’ position. Splotch has been 

compiled with Open MPI version 1.8.3, CUDA version 7.5, GCC version 4.8.2, and HDF5 version 



41 
 

1.8.15. Configuration for CUDA is 1 GPU per MPI task. Benchmarks were performed a total of three 

times each, with the fastest time for each used in the comparison. If significant differences in time 

were observed after performing three benchmarks (more than 20 seconds) this time would be 

declared as an outlier and the benchmarks were performed twice more. The resulting image was 

deleted after each benchmark, before running the next. The fastest time was then used from the 

remaining non-outlier times, which generally have a range of less than 3 seconds. It was not 

uncommon for benchmarks to occasionally take a significantly longer than previous benchmarks and 

benchmarks for the first version of the reader seemed to show faster time after the first two 

benchmarks. The reason for this is currently unknown, but can perhaps be put down to hardware 

performance. Regardless, the fastest time was used so as to show the speed than can be achieved. 

The maximum amount of individual nodes that the gSTAR system would grant via the jobs system 

was 40. 

Table 2 Table of benchmark showing each versions wall time in seconds against nodes (task per node) used. 

 

  

  

Table 3 Table of number of benchmark performed per amount of nodes (tasks per node) used. 

Version 8(1) 16(1) 24(1) 24(2) 36(1) 40(1) 

First Version 396.9753 64.6225 46.9483 26.3498 32.3037 28.2916 

Second Version 114.6673 19.8179 12.4716 8.2426 8.8676 9.5299 

Version 8(1) 16(1) 24(1) 24(2) 36(1) 40(1) 

First Version 7 5 9 7 5 3 

Second Version 5 3 5 3 3 3 

8(1) 16(1) 24(1) 24(2) 36(1) 40(1)

First Version 396.9753 64.6225 46.9483 26.3498 32.3037 28.2916

Second Version 114.6673 19.8179 12.4716 8.2426 8.8676 9.5299

0

50

100

150

200

250

300

350

400

450

Ti
m

e(
s)

Nodes(tasks per node)

Walltime in seconds

First Version Second Version

Figure 6.5.1-a Graph showing each versions wall time in seconds against nodes (task per node) used. 



42 
 

The optimised version of the reader is showing significant gains in time taken. Looking at the amount 

of benchmarks that were ran using the conditions that were defined, it can also be said that the 

optimised version of the reader was more consistent with its results. 

The benchmark performed was limited by the size of the dataset provided and the individual 

snapshots within, and ideally, could be performed on a larger dataset.

6.5.2 Further Optimisation 

Although the optimised version of the reader is 

already showing large gains in time taken, the 

most optimal solution for the reader in terms of 

time and memory would be to, initially, read the 

snapshots of each particle and store these in 

memory. As a snapshot is an integer value (2 

bytes), this would use  2 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 

bytes of memory. This would then be checked 

against the snapshot specified in the parameter 

file, reducing this down to 2 ∗

𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 bytes of data. Now that the 

reader knows which particles it should read, it 

selects only the areas of memory that contain 

the variables for these correct particles from the 

file, and reads these into the buffer, discarding 

the original list of correct particles once it has 

done so. This leaves a total size of 

((4 ∗ 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠) ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑒𝑙𝑑𝑠) + (2 ∗ 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠) 

in bytes of memory at most, before the snapshots have been discarded.

8(1) 16(1) 24(1) 24(2) 36(1) 40(1)

First Version 7 5 9 7 5 3

Second Version 5 3 5 3 3 3

0

1

2

3

4

5

6

7

8

9

10

N
u

m
b

er
 o

f 
b

en
ch

m
ar

ks

Nodes(tasks per node)

Benchmarks Ran 

First Version Second Version

Figure 6.5.1-b Graph showing number of benchmark performed per amount of nodes (tasks per node) used. 

Figure 6.5.2-a Snapshot 28 of the sage-millennium.h5 
dataset. 



43 
 

6.6 EVALUATION AND FUTURE WORK

6.6.1 Summery 

If we compare the state of the final artefact against the requirements of the project, it would be 

accurate to say that the project has been a success. The Splotch software on the gSTAR system is 

successfully reading the data that was provided, and it is also providing an automated way to 

position the camera. Whilst it is also providing a default value for the brightness and smoothing 

factor parameters, these could be further improved by employing some kind of heuristic function 

which takes into account the amount of particles to be rendered. However, as the time scale for this 

project was short, these functions were not completed in time to be included here. 

Working within a HPC environment was not a user friendly experience. All interaction with the 

system has to be performed via the command line, which can be difficult if a user has no experience 

with using it beforehand. The experience gained from studying Splotch in the previous Cinder project 

was of paramount importance for the relatively swift turnaround of the current project. This kind of 

environment would not be suitable for general use.

6.6.2 Performance 

The Splotch software has been written in a way to make itself highly portable, and this has been 

shown with the ease that it was able to take advantage of the gSTAR systems hardware by utilising 

OpenMP, Open MPI, and CUDA libraries. 

The HDF5 reader adaptation has been attempted to be as optimised as possible within the 

timeframe of the project. It has already been shown that the performance has been increased after 

experience with the HDF5 libraries increased, and there is also a suggested solution in place that 

could further improve memory use and wall time.

6.6.3 Workflow 

Workflow for the project was not as optimal as it could have been, especially considering the short 

timeframe of the project. The majority of the written code was performed locally, then transferred 

via a secure copy command to the gSTAR system. The software was compiled, and then tested, with 

the resulting image being transferred back to the local machine for review. This method was not 

ideal, as it meant that time was unnecessarily spent on these transfer times. This could have been 

streamlined by editing files directly on the server using a local text editor (Ambros, 2014), or by 

employing other methods such as automated password entry (Smylers, 2011). 

6.6.4 Future Work 

The implementation of Splotch onto the gSTAR system is only the first step in the ultimate goal of 

including it within TAO. In order to move further towards this goal Splotch would have to implement 

the solutions that have already been discussed in regards to heuristic functions for brightness and 

smoothing values, as well as possibly implementing the further optimisations outlined for the 

reader. Any work to be completed after this would have to be discussed with the client, but would 

most likely involved the ability to define Splotch parameters from a web interface for the purposes 

of TAO. 



44 
 

7 CONCLUSIONS AND EVALUATION

7.1 SUMMERY 
The undertaking of both of the projects that have been discussed in this report have been for the 

purposes of exploring ways that the Splotch software can be implemented within different 

environments, and how that can be used to create useful and interesting applications which focus 

on accessibility. The Cinder project was focused on providing an application that would run within a 

non-Unix environment for a user that was not necessarily familiar with either a Linux, HPC, or even a 

scientific environment. Whilst optimisation and performance were important to this project, the 

main aim was to understand if it were possible to implement Splotch at all, and if so, what could 

Splotch provide to the Cinder community. 

At the conclusion of the project, an application has been created that will allow a non-scientific user 

to easily use an implementation of the Splotch software that is able to produce real time 

visualizations. These visualizations are not as accurate as running the full Splotch software, but the 

application has traded accuracy for ease of use and accessibility. This application is now publicly 

available on the official Splotch GitHub repository (Ayling, 2016), and has been forwarded to the lead 

Entropy developer to make use of in the Entropy project. 

The project for TAO has demonstrated how the Splotch software can exploit high performance 

hardware within a HPC environment. The work during this project focused on providing a way for 

Splotch to be adapted to work on the gSTAR system with datasets provided by the client. The ease of 

adapting Splotch for this purpose show its strength as portable software. An emphasis on this 

project was to allow the adaptation of the HDF5 reader to be as optimised as possible. This meant, 

reducing memory use, whilst also focusing on processing time. This was important as the data 

provided was larger than the maximum data that could be tested on the Cinder project by around a 

factor of twenty (9.2GB and 181GB). It also shows how Splotch can be used within a scientific 

environment by providing a service that will be used by astronomers on TAO. 

This repot can hopefully serve as a guide for any projects which aim to implement the Splotch 

software, and offer some insights into how to undertake that. The Splotch software has proven itself 

to be a portable but powerful tool that could be implemented in a variety of environments, as has 

been shown in this report. This report will also serve as the basis for a submission to the 2016 

Astronomical Data Analysis Software and Systems (ASASS) conference being held in Trieste, Italy 

(Istituto Nazionale di Astrofisica Osservatorio Astronomico di Trieste, 2016). 



45 
 

8 TABLE OF FIGURES 

Figure 3.4-a Sample renderings in Splotch of small (left), medium (middle) and large (right) data sets. From (Jin, 

et al., 2010). 8 
Figure 3.4-b Execution model of the Splotch code. From (Dykes, 2014). 8 
Figure 4.1.1-a Waterfall model flowchart. 11 
Figure 4.1.2-a Prototype model flowchart. 11 
Figure 4.1.3-a Incremental build model flowchart. 12 
Figure 5.4.1-a Application flow of remote connection solution. 15 
Figure 5.4.1-b Application flow of solution. 16 
Figure 5.6.2-a Application class diagram. 19 
Figure 5.6.3-b Examples of loaded parameter files. The leftmost part of the image shows the parameter menu 

after having loaded the visualization- The upper most values above the separator are real time parameters that 

affect the renderer. 20 
Figure 5.6.3-c Code snippet of loading GUI parameters. 20 
Figure 5.6.4-a Code snippet of mapping particle position and colour into the SSBOs. 21 
Figure 5.6.5-a Code snippet of the vertex shader. 21 
Figure 5.6.5-b The Gaussian blur fragment shader. 22 
Figure 5.6.5-c The same image with the blur on. Notice how areas with a higher density of particles appear 

brighter. 23 
Figure 5.6.5-d A cropped image of the blur off. 23 
Figure 5.7.3-a Code snippet of the modified function to work on Windows. 25 
Figure 5.7.3-b Code snippet of part of the original load function for finding the path of the exe of the 

application. 25 
Figure 5.7.4-a Screenshot of the dataset being displayed as spheres. 26 
Figure 5.7.5-a Screenshot of the data being rendered via the initial Cinder renderer. 26 
Figure 5.7.6-a Screenshot of the Visual Studio structure. 27 
Figure 5.7.6-b Screenshot of the large 9.2GB RAMSES dataset being visualized within the Cinder application. 28 
Figure 5.7.8-a Code snippet of dynamically loading the parameters. 29 
Figure 5.9.1-a Comparison between a Splotch produced image (left) and the Cinder application’s produced 

image (right) of the same dataset. 32 
Figure 5.9.5-a Code snippet of the reader checking the new parameters. 37 
Figure 5.9.5-b Reader buffer structure. 37 
Figure 5.9.5-c Code snippet of the data being copied into the points vector. 38 
Figure 5.9.5-d Code snippet of the reader printing snapshot numbers. 38 
Figure 5.9.5-a Snapshot 39 of the mini_millennium.h5 dataset. 39 
Figure 5.9.5-b Camera calculation code using the bounding box and new Camera_Calculator class. 39 
Figure 6.5.1-a Graph showing each versions wall time in seconds against nodes (task per node) used. 41 
Figure 6.5.1-b Graph showing number of benchmark performed per amount of nodes (tasks per node) used. 42 
Figure 6.5.2-a Snapshot 28 of the sage-millennium.h5 dataset. 42 



46 
 

9 BIBLIOGRAPHY 

Akten, M., Bereza, M., Buni, S., McNamee, D., & Dörfelt, M. (n.d). DEUTSCHE BANK – HI-RES 

REALTIME ARTWORKS. Retrieved from FIELD: https://www.field.io/project/deutsche-bank-

hong-kong/ 

Ambros, G. (2014, November 25). Editing files remotely via SSH on SublimeText 3. Retrieved from 

wrgms.com: https://wrgms.com/editing-files-remotely-via-ssh-on-sublimetext-3/ 

Android Interfaces and Architecture. (n.d). Retrieved from android: 

https://source.android.com/devices/ 

Ayling, E. (2016, March 17). Cinder Previewer- Windows. Retrieved from github- splotch: 

https://github.com/splotchviz/splotch/releases/tag/cinderWindows-v1.0 

Becciani, U., Costa, A., Antonuccio-Delogu, V., Caniglia, G., Comparato, M., Gheller, C., . . . 

Massimino, P. (2010). VisIVO - Integrated Tools and Services for Large-Scale Astrophysical 

Visualization. The Publications of the Astronomical Society of the Pacific, 122, 119-130. 

Bernyk, M., Croton, D., Tonini, C., Hodkinson, L., Hassan, A., Garel, T., . . . Hegarty, S. (2016, January 

25). The Theoretical Astrophysical Observatory: Cloud-Based Mock Galaxy Catalogues. 

arXiv:1403.5270. Retrieved from http://arxiv.org/pdf/1403.5270v4.pdf 

Bersoff, E. H., & Davis, A. M. (1992). Impacts of Life Cycle Models on SOFTWARE CONFIGURATION 

Management. Communications of the ACM, 34(8), 104-118. 

Boylan-Kolchin, M., Springel, V., White, S. D., Jenkins, A., & Lemson, G. (2009). Resolving cosmic 

structure formation with the Millennium-II Simulation. Monthly Notices of the Royal 

Astronomical Society, 398(3), 1150-1164. 

chaoticbob. (2015, November 28). Android and Linux port #1200. Retrieved from github- Cinder: 

https://github.com/cinder/Cinder/pull/1200 

chaoticbob. (2015, November 28). RFC: Cinder for Android and Linux. Retrieved from Cinder Forums: 

https://forum.libcinder.org/topic/rfc-cinder-for-android-and-linux 

Christensen, M. H. (2011, February 19). GPU versus CPU for pixel graphics. Retrieved from Syntopia: 

http://blog.hvidtfeldts.net/index.php/2011/02/gpu-versus-cpu-for-pixel-graphics/ 

Cider. (2015c). Cinder 0.9.0. Retrieved from Cinder: https://libcinder.org/notes/v0.9.0 

Cinder. (2015a). About. Retrieved from Cinder: https://libcinder.org/about 

Cinder. (2015b). Gallery. Retrieved from Cinder: https://libcinder.org/gallery 

Cinder. (2015d). iOS Notes. Retrieved from Cinder: 

https://libcinder.org/docs/branch/master/guides/ios-notes/index.html 

Dolag, K., Borgani, S., Schindler, S., Diaferio, A., & Bykov, A. (2008). Simulation techniques for 

cosmological simulations. Space Science Reviews, 4(1), 229-268. Retrieved from 

http://arxiv.org/pdf/0801.1023v1.pdf 

Dolag, K., Reinecke, M., Gheller, C., & Imboden, S. (2008, December 1). Splotch: visualizing 

cosmological simulations. New Journal of Physics, 10. 



47 
 

Dykes, T. (2014, February 26). Big Data Visualization on the MIC. Many-Core Seminar Series. Oxford. 

Retrieved from 

https://www.oerc.ox.ac.uk/sites/default/files/uploads/Oxford_BigDataonMIC_260214.pdf 

Edwards, P. (2016, March 16). Science Outreach. Retrieved March 22, 2016, from Durham University: 

https://www.dur.ac.uk/science.outreach/ 

Europeon Space Agency. (2013, March 20). N° 7–2013: PLANCK REVEALS AN ALMOST PERFECT 

UNIVERSE. Retrieved from ESA: 

http://www.esa.int/For_Media/Press_Releases/Planck_reveals_an_almost_perfect_Univers

e 

Filip, S. (2014, July 15). An investigation of fast real-time GPU-based image blur algorithms. 

Retrieved from Intel Developer Zone: https://software.intel.com/en-

us/blogs/2014/07/15/an-investigation-of-fast-real-time-gpu-based-image-blur-algorithms 

Furlani, J. L. (1991). Modules: Providing a flexible user environment. Proceedings of the fifth large 

installation systems administration conference (LISA V) (pp. 141-152). Berkeley: USENIX 

Association. Retrieved March 19, 2016, from 

http://modules.sourceforge.net/docs/Modules-Paper.pdf 

Goldbaum, N. (2011, June 11). Running your first SPH simulation. Retrieved from astrobites: 

http://astrobites.com/2011/06/11/running-your-first-sph-simulation/ 

Hassan, A. H. (n.d). About Green II. Retrieved March 18, 2016, from Centre for Astrophysics and 

Supercomputing- Supercomputing @ Swinburne: 

http://supercomputing.swin.edu.au/about-green-ii/ 

Heitmann, K., Frontiere, N., Sewell, C., Habib, S., Pope, A., Finkel, H., . . . Bhattacharya, S. (2015). THE 

Q CONTINUUM SIMULATION: HARNESSING the POWER of GPU ACCELERATED 

SUPERCOMPUTERS. Astrophysical Journal, Supplement Series, 219(2). Retrieved from 

http://arxiv.org/pdf/1411.3396v1.pdf 

Hodgin, R. (2013, June 24). Boil Up: Realtime Feeding Frenzy. Retrieved from Robert Hodgin: 

http://roberthodgin.com/portfolio/work/boil-up/ 

Hodgin, R. (2013, November 03). Oculus Rift: Gravity. Retrieved from Robert Hodgin: 

http://roberthodgin.com/portfolio/work/oculus-rift-gravity/ 

Hurlbut, J. (2014, December 1). ORBIGON. Retrieved from jameshurlbut: 

http://jameshurlbut.net/wp/portfolio/orbigon/ 

Ishiyama, T., Enoki, M., Kobayashi, M., Makiya, R., Nagashima, M., & Oogi, T. (2015). The ν2GC 

simulations: Quantifying the dark side of the universe in the Planck cosmology. Publications 

of the Astronomical Society of Japan, 4(67). Retrieved from 

http://arxiv.org/pdf/1412.2860v2.pdf 

Istituto Nazionale di Astrofisica Osservatorio Astronomico di Trieste. (2016). ADASS 2016 - Trieste. 

Retrieved from ADASS XXVI: http://www.adass2016.inaf.it/ 

JeGX. (2014, July 04). GPU Buffers: Introduction to OpenGL 4.3 Shader Storage Buffers Objects. 

Retrieved from Geeks3D: http://www.geeks3d.com/20140704/tutorial-introduction-to-

opengl-4-3-shader-storage-buffers-objects-ssbo-demo/ 



48 
 

Jin, Z., Krokos, M., Rivi, M., Gheller, C., Dolag, K., & Reinecke, M. (2010, May). High-performance 

astrophysical visualization using Splotch. Procedia Computer Science, 1(1), 1775-1784. 

Jorgensen, P. C. (2013). Software testing : a craftman's approach (4th ed.). Boca Raton: Auerbach 

Publications. 

Kepler, G. (2015, November 20). Animated Gifs in Cinder. Retrieved from The Grego: 

http://www.thegrego.com/2015/11/20/animated-gifs-in-cinder/ 

Kitware. (n.d). Overview. Retrieved from Paraview: http://www.paraview.org/overview/ 

Klypin, A., Trujillo-Gomez, S., & Primack, J. (2011, October 20). Dark Matter Halos in The Standard 

Cosmological Model: Results from The Bolshoi Simulation. Astrophysical Journal, 740(2), 1-

17. 

Klypin, A., Yepes, G., Gottlober, S., Prada, F., & Hess, S. (2016). MultiDark simulations: the story of 

dark matter halo concentrations and density profiles. MNRAS Working Paper, 4(457), 4340-

4359. 

kollision. (2011, November 29). AUDI URBAN FUTURE. Retrieved from kollision: 

http://kollision.dk/en/urbanfuture 

Kosara, R. (2007). Visualization Criticism – The Missing Link Between Information Visualization and 

Art. Information Visualization, 2007. IV '07. 11th International Conference (pp. 631-636). 

Zurich: IEEE. 

Lawrence Livermore National Laboratory. (n.d). VisIt. Retrieved from Weapons and Complex 

Integration: https://wci.llnl.gov/simulation/computer-codes/visit 

Lengeling, T. S., & Castro, G. (2014). Aether. Retrieved from Works and Portfolio of Thomas Sanchez 

Lengeling: http://codigogenerativo.com/works/aether/ 

Lerner, L. (2015, October 29). Researchers model birth of universe in one of largest cosmological 

simulations ever run. Retrieved from Argonne National Laboratory: 

http://www.anl.gov/articles/researchers-model-birth-universe-one-largest-cosmological-

simulations-ever-run 

Markovic, K. (2016, February 26). Entropy: Live Astronomy Documentary Meets an Electronic Music 

Performance. Retrieved March 03, 2016, from Research Councils UK: 

http://gtr.rcuk.ac.uk/projects?ref=ST/N000293/1 

Microsoft. (2016a). Optimizing HLSL Shaders. Retrieved from Windows Dev Center: 

https://msdn.microsoft.com/en-us/library/windows/desktop/cc627119(v=vs.85).aspx 

Microsoft. (2016b). OpenMP in Visual C++. Retrieved from Microsoft Developer Network: 

https://msdn.microsoft.com/en-us/library/tt15eb9t.aspx 

Myers, G. J., Sandler, C., & Badgett, T. (2011). The Art of Software Testing (3rd ed.). Hoboken, New 

Jersey: John Wiley & Sons. 

Net Applications. (2016, February). Desktop Operating System Market Share. Retrieved March 04, 

2016, from NetMarketShare: https://www.netmarketshare.com/operating-system-market-

share.aspx?qprid=10&qpcustomd=0 



49 
 

Popa, B. (2015, January 10). Microsoft Explains Why Windows 10 32-Bit Is Still Needed. Retrieved 

from Softpedia: http://news.softpedia.com/news/Microsoft-Explains-Why-Windows-10-32-

Bit-Is-Still-Needed-469563.shtml 

Pressman, R. S. (2005). Software engineering : a practitioner's approach. Dubuque, Iowa: McGraw-

Hill. 

Processing Foundation. (n.da). Cover. Retrieved February 07, 2016, from Processing: 

https://processing.org/ 

Processing Foundation. (n.db). Exhibition. Retrieved February 07, 2016, from Processing: 

https://libcinder.org/gallery 

Protalinski, E. (2015, October 01). Windows 10 grabs 6.63% market share, Linux finally passes 

Windows Vista. Retrieved from VentureBeat: 

http://venturebeat.com/2015/10/01/windows-10-grabs-6-63-market-share-linux-finally-

passes-windows-vista/ 

Rákos, D. (2010, September 7). Efficient Gaussian blur with linear sampling. Retrieved from 

RasterGrid: http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-

sampling/ 

Rayne, C. (2014, May 4). Why Modern GPU’s Perform Faster Than CPU’s & Good At Parallel 

Computing Part 1. Retrieved from Red Gaming Tech: http://www.redgamingtech.com/why-

modern-gpus-perform-faster-than-cpus-good-at-parallel-computing-part-1/ 

Reas, C. (2007). Processing : a programming handbook for visual designers and artists. Cambridge: 

MIT Press. 

Rijnieks, K. (2013). Cinder – Begin Creative Coding. Birmingham: Packt Publishing Ltd. 

Rivi, M., Dykes, T., Krokos, M., & Dolag, K. (2014, July). GPU accelerated particle visualization with 

Splotch. Astronomy and Computing, 5, 9-18. 

Royal Institution. (n.d). About the CHRISTMAS LECTURES. Retrieved from The Royal Institution: 

http://www.rigb.org/christmas-lectures/about 

Rutter, D. (2012, May 24). Ask Dan: What's with the 3Gb memory barrier? Retrieved from Dan's 

Data: http://www.dansdata.com/askdan00015.htm 

Samaroo, A., Thompson, G., & Hambling, B. (2015). Software Testing: An ISTQB-BCS Certified Tester 

Foundation Guide (3rd ed.). Swindon: BCS. 

Sample, I. (2015, September 1). Christmas lectures to explore challenges of space flight. Retrieved 

from The Guardian: https://www.theguardian.com/science/2015/sep/01/christmas-

lectures-space-flight-royal-institution-kevin-fong 

Schroeder, W., Martin, K., & Lorensen, B. (1996). The visualization toolkit : an object-oriented 

approach to 3D graphics. Upper Saddle River: Prentice Hall. 

Sciacca, E., Bandieramonte, M., Becciani, U., Costa, A., Massimino, P., Pistagna, C., . . . Petta, C. 

(2013). VisIVO workflow-oriented science gateway for astrophysical visualization. 

Proceedings of the 2013 21st Euromicro International Conference on Parallel, Distributed, 

and Network-Based Processing (pp. 164-171). Belfast: IEEE. 



50 
 

Selikoff, N. (2013). Beautiful Chaos. Retrieved from Nathan Selikoff: 

http://nathanselikoff.com/works/beautiful-chaos 

Shu, F. (1991). The Physics of Astrophysics: Volume I Radiation. New York: University Science Books. 

Smylers. (2011, August 16). SSH Can Do That? Productivity Tips for Working with Remote Servers. 

Retrieved from blogs.perl.org: http://blogs.perl.org/users/smylers/2011/08/ssh-

productivity-tips.html 

Song, G., Zheng, Y., & Shen, H. (2006). Paraview-based collaborative visualization for the grid. 

Lecture Notes in Computer Science, 3842, 819-826. 

Springel, V., White, S. D., Jenkins, A., Frenk, C. S., Yoshida, N., Gao, L., . . . Pearce, F. (2005, June 2). 

Simulations of the formation, evolution and clustering of galaxies and quasars. Nature, 

435(7), 629-636. 

Springel, V., Yoshida, N., & White, S. D. (2001). GADGET: a code for collisionless and gasdynamical 

cosmological simulations. New Astronomy, 6(2), 79-117. 

Stephens, T. (2011, September 29). Scientists release most accurate simulation of the universe to 

date. Retrieved from University of California, Santa Cruz- Newscenter: 

http://news.ucsc.edu/2011/09/bolshoi-simulation.html 

Teyssier, R. (2002). Cosmological hydrodynamics with adaptive mesh refinement. A new high 

resolution code called RAMSES. Astronomy and Astrophysics, 385, 337-364. Retrieved from 

University of Zurich- Institute for Computational Science: 

http://www.ics.uzh.ch/~teyssier/ramses/RAMSES.html 

The HDF Group. (2011, June 22). WHY HDF? Retrieved from The HDF Group: 

https://www.hdfgroup.org/why_hdf/ 

The HDF Group. (2015, May 20). HDF5 TUTORIAL: ADVANCED TOPICS COMPOUND DATATYPES. 

Retrieved from The HDF Group: https://www.hdfgroup.org/HDF5/Tutor/compound.html 

The Illustris Collaboration. (2015). About- Project Description. Retrieved from Illustris Project: 

http://www.illustris-project.org/about/#public-two 

Theoretical Astrophysical Observatory (TAO). (n.d). About. Retrieved March 18, 2016, from 

Theoretical Astrophysical Observatory: https://tao.asvo.org.au/tao/about/ 

Upswell. (n.d). New Perspectives on Human Rights. Retrieved February 07, 2016, from Upswell: 

http://www.hello-upswell.com/project/canadian-museum-human-rights/ 

Vogelsberger, M., Genel, S., Springel, V., Torrey, P., Sijacki, D., Xu, D., . . . Hernquist, L. (2014, 

October 21). Introducing the Illustris project: the evolution of galaxy populations across 

cosmic time. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2(444), 1518-

1547. 

Wall, M. (2012, September 13). Neil Armstrong Inspired Canadian Astronaut's Giant Leap. Retrieved 

from Space: http://www.space.com/17593-neil-armstrong-chris-hadfield-canadian-

astronaut.html 

Weinstein, J., & Jaques, T. (2010). Achieving Project Management Success in the Federal 

Government. Vienna, Washington: Management Concepts, Inc. 



51 
 

Woodring, J., Heitmann, K., Ahrens, J., Fasel, P., Hsu, C.-H., Habib, S., & Pope, A. (2011). Analyzing 

and Visualizing Cosmological Simulations with ParaView. The Astrophysical Journal 

Supplement Series, 195. 

 



52 
 

10 APPENDIX 1 - CLIENT PROPOSAL DOCUMENT 

Integrating Splotch into a Cinder 
application 
Cinder 

Cinder is an open source C++ library, with support for OpenGL. It aims to give advance visualization 

abilities whilst being easy to learn. It has official support for Windows, OSX, iOS, and WinRT. It 

depends heavily on system libraries to work, which means that, in its current form, there is no 

official Linux support (although development is being done in this area). 

Splotch 

Splotch is a software tool used to visualize cosmological data sets. It is written in C++ and designed 

to be used within a Linux environment. It supports various types of data including Gadget, and 

Ramses. 

Potential Solutions 

CREATING A SPLOTCH-LIKE PLUGIN FOR CINDER 

This would involve using Splotch’s data readers for the purpose of extracting the data in a way which 

would allow Cinder to use and visualize it within its application. This would be similar to how the 

previewer works but would use Cinder as an interface instead to explore and possibly add additional 

information and interactivity to the visualization for the purposes of the Entropy project. This would 

allow a “splotch-like” program to be run on Windows and OSX. 

 

 

 

 

USING CINDER AS AN INTERFACE TO RUN SPLOTCH 

Cinder would be used to set the parameters for the data which would then be given to Splotch (most 

likely remotely so Splotch can be running on Linux). Splotch would then pass the resulting image 

back to Cinder which would then be used to explore the visualization. As Cinder cannot currently run 

on Linux in a form that would be useable, the data would have to already be on the target machine 

(which would be running Linux) in order to eliminate the transfer time of the potentially very large 

files. 

Cinder 

Application 

 

Cinder 

Application 

 

Cinder 

Application 

 

Cinder 

Application 

 

Cinder 

Application 

 

Cinder 

Application 

 

Point to data 

 

Point to data 

 

Point to data 

 

Point to data 

 

Point to data 

 

Point to data 

 

Point to data 

 

Point to data 

Read/convert 

data 

 

Read/convert 

data 

 

Read/convert 

data 

 

Read/convert 

data 

 

Read/convert 

data 

 

Read/convert 

data 

 

Render via Cinder 

with camera controls 

etc 

 

Render via Cinder 

with camera controls 

etc 

 

Render via Cinder 

with camera controls 

etc 

 

Render via Cinder 

with camera controls 

etc 

 

Render via Cinder 

with camera controls 

etc 

If Cinder compatible data is 

selected 

 

If Cinder compatible data is 

selected 

 

If Cinder compatible data is 

selected 

 

If Cinder compatible data is 

selected 

 

If Cinder compatible data is 

selected 

 



53 
 

11 APPENDIX 2- SPLOTCH MANUAL FIRST DRAFT 

Splotch Manual 
For version 6.0 

About 

Splotch is a ray tracer primarily for visualization of SPH simulation output (e.g. Gadget data). Various types of data are supported, including AMR outputs 

such as RAMSES and Enzo data. 

Current Status 

Setup 

1. Download the latest version of Splotch. 

2. Unpack the .tar file. 

3. Edit the makefile. 

4. Run make from the terminal. 

5. Run the Splotch application with a parameter file. EG “./Splotch6-generic demo.par” 

 

If using the previewer, please see the Previewer Readme in the docs/ folder for instructions on how to setup Splotch.  

Makefile 

The makefile is commented in a way to allow you to easily edit Splotch to suit your needs. Various options are at the top of the file that you can 

uncomment depending on what features you require. If you are using a standard linux distro please uncomment “generic” as your system type. Otherwise 

uncomment the appropriate type. 

 

To add a new system type to the makefile, you will need to know the path to the relevant libraries for the features you wish to use. E.g., MPI, CUDA, HDF5.  

http://wwwmpa.mpa-garching.mpg.de/~kdolag/Splotch/


54 
 

Parameter File 

A few parameter files are included with the Splotch download to serve as examples. Listed below are some of the more important parameters. 

 

Parameter Type Usage Notes 

infile String Path to data file  

simtype Integer Type of the data file 0,1- Plain binary file,  
2- Gadget2,  
3- Enzo,  
4- Millenium,  
5- Mpiio,  
6- Mesh reader,  
7- Hdf5, 
8- Gadget HDF5, 
10- VisiVO, 
11- Tipsy, 
13- RAMSES, 
14- Bonsai, 
15- Ascii, 
16-Fits. 

ptypes Integer Number of types of particle data 
to be read. 

 



55 
 

pictype Integer File output format 0- TGA uncompressed,  
1- PPM ASCII,  
2- PPM binary,  
3- TGA runlength-compressed 

outfile String Name of output file  

xres/yres Integer Specify the output resolution of 
the image 

Generally setting xres is enough, as yres will match 
it unless specified otherwise. 

colorbar Booleon Include the color palette color bar 
beneath the image.  

If you have more than one palette for the image, it 
will include both. 

paletteX 
(where X = the particle type. EG 
palette0 for the first type, palette1 for 
the second etc) 

String Path to the appropriate palette file 
to be used. 

Path should generally be “palettes/” followed by the 
chosen palette EG “palettes/OldSplotch.pal” 

brightnessX 
(where X= the particle type.) 

Float Set the brightness value of the 
data. 

e.g. “brightness0 = 1.2” 

camera_x 
camera_y 
camera_z 

Float The position of the camera 
defined in XYZ coordinates. 

  



56 
 

lookat_x 
lookat_y 
lookat_z 

Float The position that the camera will 
point at defined in XYZ 
coordinates. 

 

sky_x 
sky_y 
sky_z 

Float The up vector for the camera. Generally 0, 0 ,1. 

fov Float The field of view value for the 
camera. 

 

 

More information can be found here. 

Notes 

● The default path for the saved image is the Splotch directory.

http://wwwmpa.mpa-garching.mpg.de/~kdolag/Splotch/Source/parameters.txt


57 
 

12 APPENDIX 3- TEST CASES 

12.1 FIRST PROTOTYPE 

F1 System::setup 

Scope Function creates a sphere object. 
Function orients the camera. 

Result Test Passed 17/10/2015 

  

F2 System::draw 

Scope Function draws spheres within 3D space. 

Result Test Passed 17/10/2015 

  

F3 System::readFile 

Scope Function opens and reads a file into a vector. 

Result Resolved an issue related to out of range vector calls. 
 
Test Passed 18/10/2015 

 

  



58 
 

12.2 SECOND PROTOTYPE 

A1 Application Compilable with Splotch files 

Scope Application is able to compile with the Splotch header files 
included. 

Result Fixed multiple instances of errors related to incorrect include 
paths due to file paths differing from the original Splotch 
file directories. 
 
Test Passed 15/12/2015 

  



59 
 

12.3 THIRD PROTOTYPE 

F1 System::setup 

Scope Function is creating a string with the correct file path to a 
parameter file, and pass this into SimpleGUI::Load. 

Result Test Passed 05/01/2016 

  

F4 SimpleGUI::Load 

Scope Function is extracting the path of the exe. 
Function passes the parameter path to Parameter::Load. 

Result Identified and solved issues which were a result of the function 
expect a Unix path. Function was modified to work with the Windows 
file system. 
 
Test Passed 05/01/2016 

  

M1 Previewer is able to load a parameter file. 

Scope Application is able to load a parameter file. 

Result Test Passed 06/01/2016 

  

M2 Previewer Files are using Splotch to load 
particles 

Scope Application is able to provide a parameter file path and have the 
particles be loaded. 

Result Identified a porting problem within walltime_c.c which needed the 
equivalent Windows libraries for some functions. 
 
Commented out functions which included unsupported OpenGL function 
calls. 
 
Application suffers from an out of range memcopy exception when 
reading the Ramses data. 
Test Failed 07/01/2016 

 

  



60 
 

12.4 FOURTH PROTOTYPE 

M1 Previewer Files are using Splotch to load 
particles 

Scope Application is able to provide a parameter file path and have the 
particles be loaded. 

Result Identified and fixed an issue relating to Splotch not being able 
to find the palette files. 
 
Application is able to load the smaller Gadget files. 
 
Test Passed 14/01/2016 

  

M2 Application is able to render loaded particles 
within Cinder 

Scope Application is able to take the particle vector provided by 
Splotch and use this to render spheres at these positions. 

Result Application can only render particles at a factor of 100. 
 
Test Passed 14/01/2016 

 

  



61 
 

12.5 FIFTH PROTOTYPE 

F7 CinderRender::Draw 

Scope Function is drawing the FBO to screen. 

Result Test Passed 23/01/2016 

  

S1 Particles.vert 

Scope Shader is mapping the colour of the particle. 
Shader is mapping particles to a quad. 
Shader is calculating the saturation, contrast, and brightness 
via a function. 

Result Issues fixed relating to vector4 to vector3 conversion. 
Test Passed 23/01/2016 

  

S2 Particles.frag 

Scope Shader is discarding pixels correctly. 

Result Test Passed 23/01/2016 

  

F2 System::draw 

Scope Function is calling CinderRender::Draw 

Result Test Passed 23/01/2016 

 

  



62 
 

12.6 SIXTH PROTOTYPE 

F5 CinderRender::Load 

Scope Function is finding shader files and loading them into a shader 
object. 
Function sets a clipping plane and camera lookat. 
Function creates SSBOs. 
Function creates an Index VBO. 
Function loads particle positions into a SSBO. 
Function is creating blur FBOs. 

Result Test Passed 25/01/2016 

  

F7 CinderRender::Draw 

Scope Function is drawing the FBO to screen. 
Function is drawing the blur FBO over the original FBO using 
alpha blending. 

Result Test Passed 25/01/2016 

  

F6 CinderRender::RenderToFBO 

Scope Function is correctly scoping and drawing to the correct FBOs. 
Function is passing correct variables to the shaders.  

Result Identified and fixed issue relating blur FBOs not correctly 
mapping to the screen size. 
 
Test Passed 25/01/2016 

  

S3 blur_pass.vert 

Scope Shader is passing the texture coordinates through to the 
fragment shader. 

Result Issues fixed relating to different GLSL version keywords. 
Test Passed 25/01/2016 

  

S4 blur.frag 

Scope Shader is applying the Gaussian blur correctly to each particle. 

Result Test Passed 25/01/2016 

 

  



63 
 

12.7 SEVENTH PROTOTYPE 

A2 Application is loading as a 64bit program. 

Scope Application is correctly linking appropriate Cinder libraries and 
compiling as a 64bit program. 

Result Fixed issues with incorrect linking where compiler was still 
linking to x86 libraries. 
 
Test Passed 16/02/2016 

  

A1 Application Compilable with Splotch files 

Scope Application is able to compile with the Splotch header files 
included. 

Result Test Passed 16/02/2016 

  

M2 Previewer Files are using Splotch to load 
particles 

Scope Application is able to provide a parameter file path and have the 
particles be loaded. 

Result Application is now able to load the large Ramses dataset. 
Test Passed 16/02/2016 

 

  



64 
 

12.8 EIGHT PROTOTYPE 

F5 CinderRender::Load 

Scope Function is finding shader files and loading them into a shader 
object. 
Function sets a clipping plane and camera lookat. 
Function creates SSBOs. 
Function creates an Index VBO. 
Function loads particle positions into a SSBO. 
Function is creating blur FBOs. 
Function is initialising blurStrength variable. 

Result Test Passed 22/02/2016 

  

F7 CinderRender::Draw 

Scope Function is drawing the FBO to screen. 
Function is drawing the blur FBO over the original FBO using 
alpha blending, when a blur Boolean is toggled. 
Function is passing variables to shaders. 

Result Test Passed 23/02/2016 

  

F6 CinderRender::RenderToFBO 

Scope Function is correctly scoping and drawing to the correct FBOs, 
when a blur Boolean is toggled. 
Function is passing correct variables to the shaders.  

Result Identified and fixed issue relating blur FBOs not correctly 
mapping to the screen size. 
 
Test Passed 23/02/2016 

  

F8 System::createParmas 

Scope Function is correctly creating parameters on screen for 
rendering tweaks. 

Result Test Passed 23/02/2016 

  

F2 System::draw 

Scope Function is calling CinderRender::Draw. 
Function is drawing the parameter box. 

Result Test Passed 01/03/2016 

  

F9 System::toggleBlur() 

Scope Function is toggling the blurOn Boolean. 

Result Test Passed 23/02/2016 



65 
 

  

S2 Particles.frag 

Scope Shader is discarding pixels correctly. 

Result Test Passed 23/02/2016 

  

S3 blur_pass.vert 

Scope Shader is passing the texture coordinates through to the 
fragment shader. 

Result Issues fixed relating to different GLSL version keywords. 
Test Passed 23/02/2016 

  

S4 blur.frag 

Scope Shader is applying the Gaussian blur correctly to each particle. 
Shader is modifying the colour according to the colour modifier. 

Result Test Passed 23/02/2016 

  

S1 Particles.vert 

Scope Shader is mapping the colour of the particle. 
Shader is modifying the colour according to the brightness 
modifier. 
Shader is mapping particles to a quad. 
Shader is calculating the saturation, contrast, and brightness 
via a function. 

Result Test Passed 23/02/2016 

 

  



66 
 

12.9 NINTH PROTOTYPE 

S1 Particles.vert 

Scope Shader is mapping the colour of the particle. 
Shader is modifying the colour according to the brightness 
modifier. 
Shader is mapping particles to a quad. 
Shader is calculating the saturation, contrast, and brightness via 
a function. 
Shader is passing the particle size variable to the fragment 
shader. 

Result Test Passed 01/03/2016 

  

S2 Particles.frag 

Scope Shader is discarding pixels correctly according to the particle 
size modifier. 

Result Test Passed 01/03/2016 

  

F10 SpotchCinder::prepareSettings 

Scope Function is setting correct window resolution. 
Function is creating a vector to define allowed file types that 
can be selected. 
Function is creating an explorer window to get the path to the 
parameter file. 
Function is storing this path if the path is valid. 

Result Identified and fixed issues with how Cinder function expected the 
its arguments. 
Test Passed 01/03/2016 

  

F1 SplotchCinder::setup 

Scope Function is passing the parameter file path to be loaded. 
Function is creating the box that holds the Cinder parameters on 
screen. 

Result Test Passed 01/03/2016 

 
 
 
 
 
 
 
 
 
  



67 
 

F8 SplotchCinder::createParmas 

Scope Function is correctly creating parameters on screen for rendering 
tweaks. 
Function is creating and storing reference to the parameter file. 
Function is creating a two dimensional dynamic array the size of 
the amount of parameters in the parameter file. 
Function is binding SplotchCinder::loadMainScene to a button. 
Function is storing parameter names and their variables in the 
array. 
Function is creating a Cinder parameter for each parameter in the 
array. 
Function is binding SplotchCinder::writeToParameterFile to a 
button. 

Result Identified and fixed issues relating to dynamic memory allocation. 
Test Passed 01/03/2016 

  

F11 SplotchCinder::loadMainScene 

Scope Function is getting loaded particles. 
Function is passing loaded particles to CinderRender::Load. 
Function is clearing the parameter box. 
Function is deleting the parameter array. 
Function is creating the new parameters. 
Function is toggling the drawMainScene Boolean. 

Result Test Passed 01/03/2016 

  

F12 SplotchCinder::writeToParameterFile 

Scope Function is opening the parameter file. 
Function is writing back to the parameter file line by line. 
Function is closing the file. 
Function is deleting the parameter box. 
Function is deleting the parameter array. 
Function is reloading the parameter file. 

Result Fixed issued where the wrong values would be written to 
parameters. 
Test Passed 01/03/2016 

  

F2 SplotchCinder::draw 

Scope Function is calling CinderRender::Draw or clearing the screen 
dependant on the drawMainScene Boolean. 
Function is drawing the parameter box. 

Result Test Passed 01/03/2016 

 



68 
 

12.10 NOT TESTED 

A3 Application can load HDF5 Files. 

Scope Application can target and load HDF5 files. 

Result Not Tested. 

  

A4 Application can load Enzo Files. 

Scope Application can target and load Enzo files. 

Result Not Tested. 

  

A5 Application can load Tipsy Files. 

Scope Application can target and load Tipsy files. 

Result Not Tested. 

 


